

An introduction to Integrated Pest Management

Drivers for IPM

Internationally IPM is being legislated and adopted

The European Union (2009) legislated for sustainable use of pesticides

Canada and the US have legislated for IPM adoption goals

Drivers

securing food production

robust and reliable production systems community concerns – environmental and human health

IPM: Reducing our reliance on insecticides

Why do we need to find ways to reduce our reliance on insecticides?

- Insecticide resistance
- Pest and secondary pest outbreaks
- Off target impacts (natural enemies, human, environment)
- Consumer demand

What is IPM?

A sustainable approach to managing pests

What tactics can be integrated?		
Prevention	Reduce the likelihood of pest outbreaks (cultural, biological)	
Avoidance	Minimise chance of susceptible crop being attacked (cultural)	
Monitoring	Collect information to guide decisions	
Suppression	Act to prevent crop loss (biological, cultural, chemical)	

Examples of the tactics in practice

Prevention	Remove green bridge (hosts)	
	Control in-field weeds prior to planting	
	Plant disease free seed (virus)	
Avoidance	Plant/harvest to minimise exposure	
	Know pest risk and crop susceptibility	
	Agronomy to optimise crop growth	
Monitoring	Pest and beneficial identification	
	Record to inform Prevention, Avoidance and Suppression decisions	
Suppression	Biological control: conserve beneficials	
	Chemical control: softest option first	

The IPM continuum

No IPM	Low	Moderate	High
No monitoring	Monitoring	Monitoring	Monitoring
Insecticide sole means of pest control.	Thresholds guide insecticide use	1-2 options (PAM)	At least 3 options (PAM)
		Thresholds guide insecticide use	Thresholds guide insecticide use

IPM in Australia's grains industry

In its infancy

Pest management highly reliant on insecticides

Limited research on other aspects of pest management

A number of perceived barriers to IPM

Is IPM a viable approach for broadacre grains?

Paul McIntosh (Landmark, Toowoomba) discusses IPM

What are some of the barriers to In Grain Crops to doing IPM?

The aims of the workshop

- Introduce and discuss the principles of an IPM approach.
- To provide practical examples of how you can implement IPM.
- To get you thinking.

Covering the basics in the workshop

Risk assessment
Monitoring
Making a decision
Management and/or control decisions

Using familiar pests as examples

Decision Making for Insect Management in Grain Cross

Best bet strategies have been devised to get you started

Northern region - Canola best bet IPM strategy

	Canola aphids	Rutherglen bug (RGB)
Summer /	Assess risk (virus)	Monitor crops for RGB and other pests during
autumn	High risk where	establishment (note: see "establishment pest best bet
	 Summer rainfall creates a Brassica green 	strategy").
	bridge	High riskif
	Warm conditions favour early aphid build-up	Warm conditions in late summer/autumn
	and timing of flights	 Weeds drying off in or near crop and RGB moving
	If high risk:	(walking) into seedling crops
	 Use an insecticide seed treatment to manage 	f spraying:
	virus spread (e.g. BWYV) by green peach aphid	 Border spray infested areas of crop and nearby
		host weeds
	Manage Brassica weeds and volunteers (ideally	 Monitor for re-invasion and the need for repeat
	area wide) 3-4 weeks before sowing	application
		Remove summer/autumn weeds (especially fleabane,
	Sow early to promote early flowering in spring	wireweed and capeweed) in or near crops 3-4 weeks
	before aphids peak	before sowing.
Winter	Monitor crops for aphid colonisation from late	Increased risk where:
willter	winter when daily temperatures start to rise.	Abundant weed hosts over winter allowing build
	High risk where	up of local populations
	Mild winter	up of focal populations
	Green peach aphid present on vegetative	
	plants	
	Forecast is for warm and dry conditions that	
	favour aphid development	
	No beneficial activity and/or aphid parasitism	
	1	ODDO Grains Res

