

An introduction to Integrated Pest Management

Drivers for IPM

Internationally IPM is being legislated and adopted

The European Union (2009) legislated for sustainable use of pesticides

Canada and the US have legislated for IPM adoption goals

Drivers

securing food production

robust and reliable production systems community concerns – environmental and human health

IPM: Reducing our reliance on insecticides

Why do we need to find ways to reduce our reliance on insecticides?

- Insecticide resistance
- Pest and secondary pest outbreaks
- Off target impacts (natural enemies, human, environment)
- Consumer demand

What is IPM?

A sustainable approach to managing pests

What tactics can be integrated?			
Prevention	Reduce the likelihood of pest outbreaks (cultural, biological)		
Avoidance	Minimise chance of susceptible crop being attacked (cultural)		
Monitoring	Collect information to guide decisions		
Suppression	Act to prevent crop loss (biological, cultural, chemical)		

Examples of the tactics in practice

Prevention	Remove green bridge (hosts)		
	Control in-field weeds prior to planting		
	Plant disease free seed (virus)		
Avoidance	Plant/harvest to minimise exposure		
	Know pest risk and crop susceptibility		
	Agronomy to optimise crop growth		
Monitoring	Pest and beneficial identification		
	Record to inform Prevention, Avoidance and Suppression decisions		
Suppression	Biological control: conserve beneficials		
	Chemical control: softest option first		

The IPM continuum

No IPM	Low	Moderate	High
No monitoring	Monitoring	Monitoring	Monitoring
Insecticide sole means of pest control.	Thresholds guide insecticide use	1-2 options (PAM)	At least 3 options (PAM)
·		Thresholds guide insecticide use	Thresholds guide insecticide use

IPM in Australia's grains industry

In its infancy

Pest management highly reliant on insecticides

Limited research on other aspects of pest management

A number of perceived barriers to IPM

Is IPM a viable approach for broadacre grains?

David Watson (AgVise Agricultural Services, Ballarat) discusses IPM

What are some of the barriers for Insect Management in Grain Crops to doing IPM?

The aims of the workshop

- Introduce and discuss the principles of an IPM approach.
- To provide practical examples of how you can implement IPM.
- To get you thinking.

Covering the basics in the workshop

Risk assessment
Monitoring
Making a decision
Management and/or control decisions

Using familiar pests as examples

Best bet strategies

Southern region - 'Best Bet' IPM strategy for crop establishment pests

	Earth mites & lucerne flea	Slugs	False wireworms & true wireworms
Pre-season (previous spring / summer)	Assess risk High risk when: History of high mite pressure Pasture going into crop Susceptible crop being planted (eg. canola, pasture, lucerne) Seasonal forecast is for dry or cool, wet conditions that slow crop growth. If risk is high: Ensure accurate identification of species Use Timerite (redlegged earth mites only) Heavily graze pastures in early-mid spring	Assess risk High risk when High stubble load Annual average rainfall > 450mm History of slug infestations Canola being planted Summer rainfall Heavy clay soils	Assess risk High risk when: History of wireworm pressure Soils high in organic matter High stubble and summer/autumn litter cover
Pre-sowing	 Use an insecticide seed dressing on susceptible crops Plan to monitor more frequently until crop establishment Use higher sowing rate to compensate for seedling loss Consider scheduling a post-emergent insecticide treatment 	If high risk: Burn stubbles Cultivate worst areas Remove weeds in paddocks/along fence-lines, at least 8 weeks prior to sowing Deploy shelter traps prior to sowing	Conduct direct visual search for adult beetles over summer and autumn Directly search (in soil) for beetle larvae 2 weeks prior to sowing If high risk: Re-assess crop choice or timing of sowing

