



### An introduction to Integrated Pest Management







### The aims of the workshop

- Introduce and discuss the principles of an IPM approach.
- To provide practical examples of how you can implement IPM tactics.
- To get you thinking, discussing, sharing experience.





# Why IPM? A way to reduce our reliance on insecticides

### Why do we need to find ways to reduce our reliance on insecticides?

- Insecticide resistance
- Pest and secondary pest outbreaks
- Off target impacts (natural enemies, human, environment)
- Consumer demand





# What are some of the barriers you face in implementing IPM?







# "I tried to go soft, but the pest pressure was so high that I had to spray or I would have lost everything. I won't be risking that again!"







#### A framework for IPM – assessing and managing risk

|                    | IPM in practice                                                                                                                |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| Know the signals   | Paddock histories and weather data inform predictions of pest pressure (risk)                                                  |  |
|                    | Pest trapping and forecasts of outbreaks inform decisions (risk).                                                              |  |
| Informed decisions | An appropriate monitoring schedule underpins informed decisions (risk)                                                         |  |
|                    | Economic thresholds guide control decisions                                                                                    |  |
| Know the pest      | Pest ID is fundamental to correctly targeting management tactics                                                               |  |
|                    | A knowledge of pest biology and ecology provide an understanding of how the pest, crop and management tactics interact (risk). |  |
|                    | An area Wide Management approach within your region may be critical for some pest species.                                     |  |





#### A framework for IPM

|                             | IPM in practice                                                                                      |  |
|-----------------------------|------------------------------------------------------------------------------------------------------|--|
| Cultural control            | Cultural practices can suppress and/or disrupt pest populations (stubble management, rotations) risk |  |
|                             | Resistant varieties reduce the susceptibility of the crop                                            |  |
| Biological control (Natural | Beneficials make a valuable contribution to reducing pest abundance                                  |  |
| regulation)                 | Biopestcides (NPVs, metarhyzium) have minimal off-target impacts.                                    |  |
| Strategic pesticide choices | Use pesticides strategically and with beneficials / non-target insects in mind                       |  |
|                             | Diversify control options to manage the risk of resistance developing (risk)                         |  |





## Best bet strategies have been devised to get you started

#### Northern region - Canola best bet IPM strategy

|          | Canola aphids                                                   | Rutherglen bug (RGB)                                               |
|----------|-----------------------------------------------------------------|--------------------------------------------------------------------|
| Summer / | Assess risk (virus)                                             | Monitor crops for RGB and other pests during                       |
| autumn   | High risk where                                                 | establishment (note: see "establishment pest best bet              |
|          | <ul> <li>Summer rainfall creates a Brassica green</li> </ul>    | strategy").                                                        |
|          | bridge                                                          | High riskif                                                        |
|          | <ul> <li>Warm conditions favour early aphid build-up</li> </ul> | Warm conditions in late summer/autumn                              |
|          | and timing of flights                                           | Weeds drying off in or near crop and RGB moving                    |
|          | If high risk:                                                   | (walking) into seedling crops                                      |
|          | Use an insecticide seed treatment to manage                     | of spraying:                                                       |
|          | virus spread (e.g. BWYV) by green peach aphid                   | <ul> <li>Border spray infested areas of crop and nearby</li> </ul> |
|          |                                                                 | host weeds                                                         |
|          | Manage Brassica weeds and volunteers (ideally                   | Monitor for re-invasion and the need for repeat                    |
|          | area wide) 3-4 weeks before sowing                              | application                                                        |
|          |                                                                 | Remove summer/autumn weeds (especially fleabane,                   |
|          | Sow early to promote early flowering in spring                  | wireweed and capeweed) in or near crops 3-4 weeks                  |
|          | before aphids peak                                              | before sowing.                                                     |
|          | Monitor crops for aphid colonisation from late                  | Increased risk where:                                              |
|          | winter when daily temperatures start to rise.                   | Abundant weed hosts over winter allowing build                     |
|          | High risk where                                                 | up of local populations                                            |
|          | Mild winter                                                     |                                                                    |
|          | Green peach aphid present on vegetative                         |                                                                    |
|          | plants                                                          |                                                                    |
|          | Forecast is for warm and dry conditions that                    |                                                                    |
|          | favour aphid development                                        |                                                                    |
|          | No beneficial activity and/or aphid parasitism                  |                                                                    |
|          |                                                                 | ODDO Grains Po                                                     |







