

Pest Management in Canola

Contents

- Canola aphids
- Diamondback moth (DBM)
- <u>Native budworm</u>
- Insecticide options in canola
- <u>Key messages</u>

Key canola pests

Pest group	Emergence	Vegetative	Flowering – Grain fill
Earth mites			
Lucerne flea			
Caterpillars (cutworms, loopers)			
Beetles (weevils, false wireworms)			
Slugs			
Earwigs, millipedes, slaters			
Snails			
Aphids			
Diamondback moth			
Native budworm			
Rutherglen bug			

Canola establishment

Decision timeline

What are the risks?

Mites, lucerne flea, Slugs, snails, earwigs, millipedes, slaters Aphids Diamondback moth Native budworm

Canola Aphids

Canola aphids

Cabbage aphid

- Greyish colonies on growing tips
- Thick powdery wax covering

Turnip aphid

- Yellow/green colonies on growing tips
- Finer wax covering
- More common in drier years

Green peach aphid

- Sparse colonies on the underside of lower leaves
- Important vector of BWY Virus

Aphid damage

Direct feeding – high populations

- Sucking, removal of nutrients
 wilting, flower abortion, reduced pod set
- Impact on the crop depends on:
 - timing (early vs late)
 - severity (intensity and duration)
 - plant stress (compensation, aphid growth)

Virus spread – few individuals needed

 Beet Western Yellows Virus spread by green peach aphid

Cabbage aphid colony on the main raceme

Risk factors

- Brassica green bridge (virus)
- <u>Weather</u>
- Low beneficial activity
- 'Hard' chemistry (any pest)

Mitigating factors

- <u>Weather</u>
- Beneficials

Lacewings

Hoverflies

Nabids

Ladybirds

Parasitoids

Yield impact / thresholds

- Estimating infestation plants/stems
- Crop stage & stress
- Predicted weather
- Potential for compensation?

Few demonstrated examples of yield loss in Australian literature

Thresholds: 10-50% infestation + limited compensation capacity

Simulated aphid damage trial. Allora, 2013.

Treatment	Yield (t/ha)
Control	2.07 a
10% of terminals removed	1.93 a
50% of terminal removed	1.98 a
90% of terminal removed	2.01 a

Treatments followed by the same letter are not significantly different (P < 0.05).

Best bet table – options for management and control

Spring	 Monitor <u>trends</u> in aphid and beneficial populations in crops over time. Use thresholds to guide spray decisions, considering crop stage (% flowering) and moisture stress. High risk where Infestation rapidly increasing during early flowering to bud formation Forecast is for warm and dry conditions to continue Low/no parasitism and beneficial activity (note: this can also happen if SPs/OPs are used to control DBM/native budworm). If spraying: Consider border sprays with a selective
	If spraying:
I	Development Corporation

Green peach aphid: Insecticide options

Managing GPA in canola and pulses

• Possible resistance to imidacloprid?

•Implement resistance management strategies, such as rotating chemicals, avoid 'insurance sprays' and apply chemicals only after monitoring and correctly identifying pest species

- •Report chemical control failures; don't necessarily assume application issue (includes imidacloprid!)
- •Reduce the availability of alternative plant hosts and consider border sprays
- •Consider role of beneficials; over time

orporation

Economics of spraying

Expected yield x price

	Control costs per hectare (chemical + application)						
Crop Value per ha	\$10	\$15	\$20	\$25	\$30	\$35	\$40
\$500	2 (%)	3	4	5	6	7	8
\$750	1.3	2	2.7	3.3	4	4.7	5.3
\$1000	1	1.5	2	2.5	3	3.5	4
\$1250	0.8	1.2	1.6	2	2	2.8	3.2
\$1500	0.7	1	1.3	1.7	2	2.3	2.7
\$2000	0.5	0.8	1	1.3	1.5	1.8	2
\$2500	0.4	0.6	0.8	1	1.2	1.4	1.6

Table values: % future yield loss before spraying is economically justified

Diamondback moth (DBM)

Diamondback moth (DBM)

- Periodic outbreaks in canola
 every 3-4 years in SA and
 - every 3-4 years in SA and NSW, Victoria
- Larvae feed on leaves, buds, flowers and pods
 - defoliation, reduced seed number & size

Risk factors for DBM

High risk	Reduced risk	Low risk
 High summer rainfall creates <i>Brassica</i> green bridge Warm and dry conditions July through spring No significant rainfall events (>10mm) 	 Significant heavy rainfall (<10mm) dislodges and drowns larvae High beneficial activity and/or DBM parasitism 	 Cool, moist conditions late winter through spring Epizootics of fungal disease (e.g. Zoophthera radicans)
Lincoln weed Perennial DBM host	Diadegma semiclausum Key DBM parasitoid	GRDC Grains Research & Development Corporation

Insecticidal control challenges

- Overlapping generations
- Larvae distributed throughout canopy
- Spray penetration
- Rapidly evolves insecticide resistance
- Product selection, good coverage critical

Treated under an emergency permit in 2007

Treated with a synthetic pyrethroid

DBM management

- Manage Brassica green bridge
- Frequently monitor DBM numbers and risk of exceeding thresholds
- If spraying:
 - Bt (<8mm larvae)
 - New chemistry
 - Rotate MOA across seasons
 - Avoid SPs

- Plant moisture status is key
- Minimum of 5 sets of 10 sweeps
- Calculate larvae per 10 sweeps

Crop stage	Moisture stressed?	Spray threshold	
Pre-flowering	Yes	> 30 larvae / 10 sweeps	
	No	> 50 larvae / 10 sweeps	
Majority in flower	Yes	< 100-200 larvae per 10 sweeps	
	No	>100-200 larvae / 10 sweeps	

Native budworm

Native budworm in canola

- Sweep net from flowering/podding until late maturity
- Dynamic thresholds based larvae per 10 sweeps
- SPs may impact DBM/aphids
- Bt or NPV for small larvae (< 7-8mm)

Mature native budworm larva burrowing into a canola pod

Native budworm life stages

Grains Research & Development Corporation

Your GRDC working with you

Helicoverpa punctigera

mm diameter

Helicoverpa size categories

Very small	Small	Medium	Large
1-3 mm	4-7 mm	8-23 mm	24-30+ mm

GR

90 % of damage caused by these larvae*

Monitoring budworm

Early warning – moth activity

- Pheromone traps

In-crop monitoring

- Sweep net

Dynamic thresholds for native budworm

	K – grain loss kg/larva/ha	P – grain price \$/tonne	C – cost of control \$/ha	ET – larvae per 10 sweeps
Field peas	50	350	10	0.6
Lentils	60	435	10	0.4
Faba bean	90	335	10	0.3
Chickpeas - desi	30	275	10	1.2
Canola	6	580	10	2.9
Lupins	7	300	10	4.8
Field peas	50	350	10	0.6

ET = (C x 1000) / (K x P)

*Developed in Western Australia: Source: DAFWA

Insecticide options in canola

Insecticide options in canola Decision Making

MOA		Canola aphids	DBM	Native budworm	Rutherglen Bug	Beneficial toxicity
11	Bt		<8mm	<8mm		Very Low
	NPV			<7mm		Very Low
	Petroleum spray oils	(s)	Mix Bt	(s)		Very Low
1A	Pirimicarb					Very Low
6	Emamectin					Mod
5	Spinetoram					Mod
1A	Methomyl		R?	WA		High
1B	OPs		R			High
3A	Pyrethroids		R			Very High

Registered R = resistance (s) = suppression **GRDC**

Grains Research & Development Corporation

Key messages

- Planning ahead gives you more options
- Assessing risk (establishment pests, aphids/DBM) helps decide which management approach to take
- Manage resistance in DBM by rotating MOAs across seasons
- Avoid using hard chemistries (SPs/OPs) in spring canola
 - Resistance management
 - Aphid flares

Supporting research organisations

Department of Agriculture, Fisheries and Forestry

Department of Primary Industries

Financial workshop support

Dow AgroSciences

Workshop facilitation

