

Pest & Beneficial Identification

Accurate ID is essential to making decisions

Contents

- Mites ID
- Beetles ID
- Caterpillars/larvae in canopies ID
- Monitoring
 - Pre-sowing & crop establishment (night active)
 - Pre-sowing & crop establishment (day active)
 - Post crop establishment (e.g. aphids, caterpillars)
- How often? Where? and How much sampling?

Many similar looking pests behave very differently!

RLEM

BOM

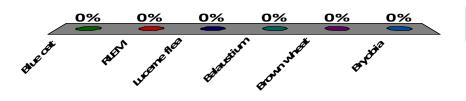
Balaustium

Bryobia

ID and Seasonality?

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
RLEM												
BOM												
Balaustium												
Bryobia												

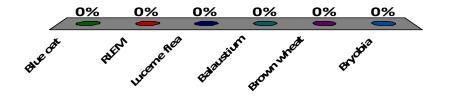
ID and Damage?



Decision Making for Insect Management in Grain Crops

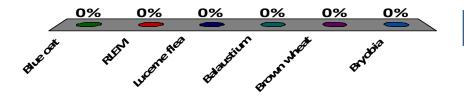
Who did this?

- 1. RLEM/blue oat mite
- 2. Slugs
- 3. Lucerne flea
- 4. Balaustium mite
- 5. Bryobia mite



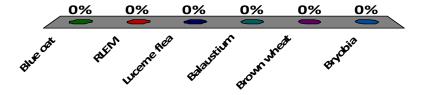
Who did this?

- 1. RLEM/blue oat mite
- 2. Slugs
- 3. Lucerne flea
- 4. Balaustium mite
- 5. Bryobia mite



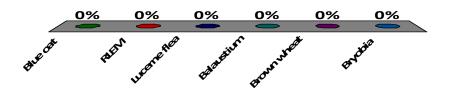
Who did this?

- 1. RLEM/blue oat mite
- 2. Slugs
- 3. Lucerne flea
- 4. Balaustium mite
- 5. Bryobia mite



Who did this?

- 1. RLEM/blue oat mite
- 2. Slugs
- 3. Lucerne flea
- 4. Balaustium mite
- 5. Bryobia mite



Decision Making for Insect Management in Grain Crops

Who did this?

- 1. RLEM/blue oat mite
- 2. Slugs
- 3. Lucerne flea
- 4. Balaustium mite
- 5. Bryobia mite

Beneficials / Natural enemies

Lucerne Flea predators

- Spiny snout mite(Neomulgus capillatus)
- Pasture snout mite(Bdellodes lapidaria)

Earth mite predators

- The Anystis mite (Anystis wallacei)
- A number of generalist native predators, including mesostigmata mites

Spiny snout mite
Photo: Tas DPIWE

Pasture snout mite

Anystis mite

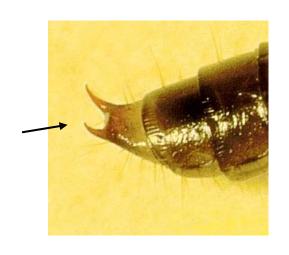
Mesostigmata mite

Beetles

Don't confuse BFB with predatory carabid beetles!

Beneficial Carabid

Pest Tenebrionids (false wireworm beetles)!



Don't confuse BFB with predatory carabids!

Bronzed field beetle larvae have 2 <u>upturned spines</u> on the last body segment

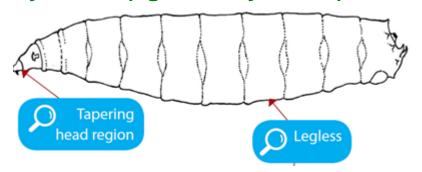
Carabid beetle larvae:

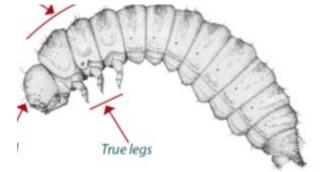
- forward facing mouthparts
- 2 <u>longer hair-like</u>
 <u>spines</u> on last body
 segment

Larvae in crop canopies

Larvae in crop canopies

Caterpillars (moth larvae) eg budworm, DBM, loopers




Fly larvae (eg hoverfly larvae)

Beetle larvae (eg ladybird larvae)

Insect Monitoring Making *informed* decisions

Monitoring

Monitoring pests and beneficials is one of the most important tools for making informed decisions around pest management

Why do we monitor?

Why do we monitor?

- Minimise risk of crop damage
- Detect any changes in pest populations
- Determine if natural enemies keep pests in check
- Maximise effective control

Start monitoring at seedling stage

What monitoring technique?

Technique depends on:

- time of year
- type of pest

Pre-sowing & crop establishment pests

- Nocturnal grazers and chewers (mostly)
- Day-active (mostly smaller mites & LF)

Post-crop establishment pests

Canopy active pest (aphids, caterpillars)

- 1. 'Grazers & chewers' (slugs, earwigs, millipedes, slaters, snails, false wireworms, cutworms, weevils and beneficials)
- -Nocturnal, often sedentary invertebrates
- -Need moisture (and daytime shelter)
 - Shelter traps
 - Pitfall traps
 - Baits
 - Nocturnal inspections

Shelter/ refuge traps

 Refuges can be tiles, wet carpet or hessian squares

Target species: slugs, cutworms, weevils, earwigs, millipedes

Baits

Seed germinating baits

Target species: false wireworms

Pitfall traps

- Open mouth containers dug into soil
- Top flush with soil allows capture of crawling invertebrates – size small enough to avoid vertebrate capture
- Fluid at bottom(water/detergent or glycol) to immobilise organisms

Target species: ground dwellers, beetles, mites, spider ants.

Effective in autumn through spring

- 2. Day active feeders (mites, lucerne flea, some false wireworms..... and beneficials)
- Can be very small or inconspicuous
 - Visual inspections
 - Presence/absence
 - Damage
 - Grid counts

Visual observations

- Searching and digging, grid counts
- Inspect for damage: roots / foliage
- Night inspections
- Uncover and turn over stubble or wood

Target species: mites, false wireworms

Monitoring: Post-establishment

3. Crop canopy pests (aphids, caterpillars,)

Transient pests; mostly 'fly in' from short or long distances

- Sweep nets
- Beat sheets
- Pheromone traps
- Sticky traps
- Visual inspections

Monitoring: Post-establishment

Sweep net

Sweep of 180° arc covers large area Use in conjunction with visual observations of underside of leaves and lower in canopy

Target species: Aphids, caterpillars and beneficials, hoverfly, lacewings and ladybirds. Most effective in spring

Brushing or beat sheet

Brush foliage over white paper or containers
Use white material and beat plants against
sheet to dislodge invertebrates for
observation

Target species: bugs, caterpillars, aphids.

Most effective in spring

Frequency of sampling

Key considerations

Risk

- Seasonal pest abundance
- Crop susceptibility/vulnerability
- Management/control options available
- Response time

Environmental factors

- Temperature
 - rate of crop growth
 - Rate of pest population growth
- Rainfall
 - Can reduce pest populations
 - Make sampling difficult/impossible

How many samples?

A compromise between time and precision

Be aware of variability between samples when averaging

- Use appropriate sampling strategy for target pest
- Experience with the pest can guide

Confidence (in estimates) more important as pest population approaches thresholds

If pest distribution is patchy

Pest biology

• reproduction, infestation and rate of dispersal – hotspots

Crop

difference in growth/attractiveness, uneven maturity

Random sampling best for patchy pests

The threshold is very low - do I need to bother with sampling?

Risks of not sampling

- applying insecticide when not needed
- timing of action early or late
- missing other pests
- miss impact of beneficials/weather

Monitor beneficials

Monitor when checking for pests

Observe:

- Beneficials (eggs, adults and juveniles)
- Parasitism
- Parasitised eggs
- Changes in pest populations over time

Record keeping

Essential for:

- Estimating pest densities (assessing variability)
- Reviewing trends in pest populations
- Post-treatment assessments
- Assessing risk from season to season
- Planning
- Learning

Appropriate monitoring underpins informed decisions

