

Sunflower, Maize and Chickpeas

Establishment pests in sunflowers and maize

Establishment pests

Sunflower	Maize	Chickpeas
True and False wireworm	Wireworms and False wireworm	Aphids as vectors of virus
Cutworms	Cutworms	Cutworm
Black field earwigs	Black field earwigs	Slugs
Black scarabs		Black Scarabs
Wingless cockroaches		

Risk of soil insects increased by:

Maintenance of suitable environment

- Weedy fallows and volunteer plants (food source)
- moisture (stubble, heavy soil)

Changes in the crop environment

- zero till + wet seasons
- dry conditions limiting available food for pests

Growing conditions

 Dry, cool or waterlogged conditions slowing seedling growth

Click beetle

larva of the true wireworm

History of soil insects

Managing soil insects

Seed treatment

- option where pest is frequent or known history
- may not provide complete protection when pest pressure is high
- reduced impact on beneficials

In-furrow spraying

reduced impact on other soil fauna

Baits (grain, slug)

- attractiveness is relative to other food sources
- applied once pest is detected

Best bet for soil insects

Northern region Establishment pest best bet IPM strategy

Pest	Pre-season	Sowing	Emergence
Slugs	Assess risk	If slug pressure is high, repeat	If slug pressure is high, regular
	High risk when	baiting may be necessary.	baiting may be necessary.
	 High stubble load 	Monitoring will guide bait use.	Monitoring will guide bait use.
	Heavy soil		Slugs are active at night; night
	 >450 mm rainfall & summer rainfall 		monitoring may be necessary to
	 History of slug infestation 		confirm slugs as the cause of
	If risk is high, deploy shelter traps prior to		seedlingloss.
	sowing.		
	Consider:		
	 Cultivation (affected areas of field) 		
	 Rolling to compact seed bed and 		
	restrict slug movement along rows.		
	 Burning stubble 		
	 Managing weeds to remove food 		
	source, at least 8 weeks prior to		
	sowing in paddocks and along fence		
	lines.		
	Baiting - effective when		
	implemented prior to sowing or crop		
	emergence and when soil is moist.		
	Aim for 25-30 baits/m ² .		

Post establishment pests of Sunflower

Soybean looper outbreak 2012

- Widespread (NSW, QLD)
- Accelerated defoliation
- 100% defoliation in worst cases
- Last outbreak in early 2000's
- What impact on yield?

GRDC Grains Research & Development Corporation
Your GRDC working with you

Simulated looper defoliation

Vegetative	
V (number) V16	Determined by counting the number of true leaves at least 4 cm in length beginning as V-1
Reproductive	
R-1	The terminal bud forms a miniature floral head rather than a cluster of leaves.
R-3	The immature bud elongates more than 2.0 cm above the nearest leaf.
R-5	This stage is the beginning of flowering.
R-7	The back of the head has started to turn a pale yellow colour.
R-9	The bracts become yellow and brown. This stage is regarded as physiological maturity.

50% defoliation

How much does a looper eat?

Leaf area consumed (square cm) (n=45)

80% of total leaf consumed in last 2 instars On average, a total of 172 square cm per larva

Yield (t/ha)

R_stage	Treatment (% defoliation)						
	0	25	50	75	100		
1	2.18 1.90 2.00		1.75	0.17			
3	2.19	2.02	1.92	1.77	0.01		
5	1.87	1.72	2.01	1.67	0.37		
7	2.27	1.92	1.60	1.89	1.02		
9	2.12	2.16	2.27	1.70	1.73		

LSD = 0.4

Oil content (%)

Treatment_%_defoliation 0
Treatment_%_defoliation 25
Treatment_%_defoliation 50
Treatment_%_defoliation 75
Treatment_%_defoliation 100
average s.e.d.

GRDC Developme

Grains Research &
Development Corporation
Your GRDC working with you

R stage

Summary

- Preliminary thresholds and management:
- 50% defoliation (~ 10 larvae per plant R1-R7)
- Target larvae < 20 mm in length
- Dipel (Bt) is effective but good coverage is required
- Susceptible to insecticides used for helicoverpa, except NPV

Rutherglen bug

Decision Making
for Integrated Pest Management
in Grain Crops

Develop on winter weed hosts locally and inland

Migrate in spring as weed hosts hay off

Spring/summer generations on weeds and crops

Model under development to predict locally generated outbreaks (CSIRO)

Knowing the lifecycle helps understand thresholds and timing

RGB Thresholds

Growth stage	Thresholds (adult bugs/plant					
	August - December	January - April				
Budding	10-15	20-25				
Seed fill	20-25	50				
Confectionary	5	5				

Helicoverpa in sunflower

Budding is most vulnerable (ET = 1medium larvae/plant)

Post flowering

ET = >17 larvae/plant

Association between Helicoverpa and head rots – prediction?

Post establishment pests of Maize

Caterpillar pests of maize

Decision Making
for Integrated Pest Management
in Grain Crops

Thresholds high, a few exceptions

Armyworm ET= 90% of plants infested, and more than 70% have at least 75% flag leaf loss.

Helicoverpa, where damage to silks ET = >2 medium-large larvae

High Beneficial activity

Pupae busting consideration

Helicoverpa armigera

Armyworm

Managing Helicoverpa in Chickpeas

Monitoring helicoverpa

Early warning – moth activity

- Pheromone traps(H. armigera and H. punctigera)
- Emergence model for *H. armigera*(http://cottassist.cottoncrc.org.au/DIET/about.aspx)

In-crop monitoring

- Sweep net
- Beatsheet

use the method appropriate to the threshold

Economic thresholds

 $Yield\ loss\ (\$/ha) = \frac{number\ heli\ cov\ erpa\ larvae\ per\ m^2 \times 2.0\ * \times chickpea\ price\ (\$/t\)}{100}$

* 2.0 g grain per larva

Beatsheet ready reckoner

	Value of yield loss (\$/ha)						
Chickpea price (\$/t)	1 larva/m²	2 larva/m²	3 larva/m²	4 larva/m²	5 larva/m²		
200	4	8	12	16	20		
300	6	12	18	24	30		
400	8	16	24	32	40		
500	10	20	30	40	50		
600	12	24	36	48	60		

A ready reckoner ET for helicoverpa in chickpeas

	Chickpea price (\$/t)							
Cost of control (\$/ha)	200	250	300	350	400	450	500	550
15	3.8	3.0	2.5	2.1	1.9	1.7	1.5	1.4
20	5.0	4.0	3.3	2.9	2.5	2.2	2.0	1.8
25	6.3	5.0	4.2	3.6	3.1	2.8	2.5	2.3
30	7.5	6.0	5.0	4.3	3.8	3.3	3.0	2.7
35	8.8	7.0	5.8	5.0	4.4	3.9	3.5	3.2
40	10.0	8.0	6.7	5.7	5.0	4.4	4.0	3.6

^{*} Based on beatsheet sample (# per m2)

Helicoverpa feeding preferences

Determine the crop stage and susceptibility

Economic Thresholds Determine the crop st

Decision Making for Integrated Pest Management in Grain Crops bility

Determine the crop stage and susceptibility

No significant yield loss by delaying spraying until podset

Making a Spray Decision

Additional factors that may influence the decision, timing and product choice -

Loss of yield and quality only occurs from pod set to maturity

- Age structure of the larval population in relation to time to desiccation or harvest
- Proportion of H. armigera and H. punctigera
- Spray conditions and drift risk
- Insecticide options, resistance levels for Helicoverpa and recent spray results in local area.
- Residual of the products

Aim for one well timed spray

