

Pest Management in Canola

Pest management in canola

- Seedlings very susceptible to chewing and sucking pests (earthmites in particular)

 favoured host of many pests
 do not recover from severe damage
- Economic damage most likely at establishment and in spring
- Planning ahead is vital in canola

Key canola pests

Emergence	Vegetative	Flowering	Podding – Grain fill
	Emergence	EmergenceVegetativeII<	EmergenceVegetativeFloweringII

GRADC Grains Research & Development Corporation

Canola establishment

Sowing tactics

Can reduce pest impact:

- Early sowing
- High vigour varieties
- Slightly higher seeding rates

Seed treatments

Seed treatments can protect canola seedlings from mites

McColl & Umina. Unpublished data

Canola spring pests

Canola aphids

Cabbage aphid

- Powdery, greyish colonies
- Dense on growing tips

Turnip aphid

- Yellow/green colonies
- Dense on growing tips
- More common in drier years

Green peach aphid

 Sparsely distributed on the underside of lower leaves

Aphid impact/damage

- Direct feeding injury (bud formation late flowering)
 - wilting
 - flower abortion
 - reduced pod set
- BWY virus transmitted persistently by GPA

Cabbage aphid colony on the main raceme

Aphid impact/damage

Virus injury more significant than direct feeding injury

Source: Valenzuela and Hoffman, 2013

Risk factors

- Brassica green bridge (virus)
- <u>Weather</u>
- Low beneficial activity
- 'Hard' chemistry (any pest)

Development Corporation

Yield impact / thresholds

- How many plants are actually infested?
- Crop stage
- Plant compensation

Few demonstrated examples of yield loss in Australian literature

No significant differences in treatments simulating aphid infestation of canola at 10, 50 and 100% of racemes. Trial conducted in a dryland crop at Allora, SE Qld, 2013.

Treatment	Yield (t/ha)
Control	2.07 a
10% of terminals removed	1.93 a
50% of terminal removed	1.98 a
90% of terminal removed	2.01 a

Treatments followed by the same letter are not significantly different (P<0.05).

Source: Canola Council of Canada. Canola Grower's Manual. Chapter 3: Growth Stages.

Grains Research & Development Corporation Your GRDC working with you

Insecticides for aphids

N.B. dimethoate is not registered for control of aphids in canola

Insecticides for aphids

N.B. dimethoate is not registered for control of aphids in canola

Green peach aphid resistance

ch &

you

Corporation

FIGURE 1 Carbamate resistance FIGURE 2 Organophosphate resistance in green peach aphid populations. in green peach aphid populations. Resistant to the chemical Resistant to the chemical Susceptible to the chemical Susceptible to the chemical FIGURE 3 Synthetic pyrethroid resistance in green peach Resistant to the chemical aphid populations. Susceptible to the chemical

GRDC factsheet March 2014

lopment Corporation

Diamondback moth (DBM)

- Periodic outbreaks in canola
 - every 3-4 years in SA and NSW, Victoria
- Larvae feed on leaves, buds, flowers and pods
 - defoliation, reduced seed number & size

Risk factors for DBM

High risk	Reduced risk	Low risk
 High summer rainfall creates <i>Brassica</i> green bridge Warm and dry conditions July through spring No significant rainfall events (>10mm) 	 Significant heavy rainfall (<10mm) dislodges and drowns larvae High beneficial activity and/or DBM parasitism 	 Cool, moist conditions late winter through spring Epizootics of fungal disease (e.g. Zoophthera radicans)
Lincoln weed Perennial DBM host	Diadegma semiclausum Key DBM parasitoid	GRDC Grains Research & Development Corporation Your GRDC working with you

Difficulties with insecticidal control

- Overlapping generations
- Larvae distributed throughout canopy
- Spray penetration
- Rapidly evolves insecticide resistance
- Product selection, good coverage critical

Insecticide resistance in DBM

Alpha-cypermethrin resistance in DBM collected from canola crops (2006-11)

Powis & Baker, 2012. Unpublished data

Similar story with organophosphates

Treated under an emergency permit in 2007

Treated with a synthetic pyrethroid

Grains Research &

Your GRDC working with you

evelopment Corporation

GR

Insecticide efficacy for DBM

Hatherleigh, SA. Peracto Research (2008)

All treatments applied at 100L/ha

Source: Syngenta, SARDI (G. Baker)

DBM management

- Manage Brassica green bridge
- Monitor to <u>assess risk</u> of exceeding thresholds
- If spraying:
 - Bt (<8mm larvae)
 - New chemistry
 - Rotate MOA across seasons
 - Avoid SPs

Parasitised DBM pupa – note capsule shape

DBM monitoring and thresholds

- Minimum of 5 sets of 10 sweeps
- Calculate larvae per 10 sweeps

Crop stage	Moisture stressed?	Spray threshold
Pre-flowering	Yes	> 30 larvae / 10 sweeps
	No	> 50 larvae / 10 sweeps
Majority in flower	Yes	< 100-200 larvae per 10 sweeps
	No	>100-200 larvae / 10 sweeps

orporation

DBM development rates

• Strongly temperature-dependent

Temperature	Lifecycle/Generation time	
28°C	14 days	
25°C	17 days	
15°C	47 days	
12°C	113 days	

DBM Development calculator available at:

http://www.dpi.vic.gov.au/agriculture/pests-diseases-and-weeds/pestinsects/ag0512-diamondback-moth/sampling-plan/further-information

Bt application checklist

- Spray after 4pm to minimise UV breakdown
- Good coverage essential (must be ingested) use a high water volume and/or wetting agent
- Target small caterpillars (2nd instar)
- Feeding attractants commercial products or 1kg of skim milk powder per hectare in the mix
- Ensure tank is free of contamination with SPs
- Mixing Canopy oil with Dipel SC can enhance efficacy

Native budworm in canola

- Sweep net from flowering/podding
- Dynamic thresholds
- SPs may impact DBM/aphids
- Bt or NPV for small larvae (< 7-8mm)

Mature budworm larva burrowing into a canola pod

Thresholds in spring canola

Flowering to grain fill	
Cabbage aphid	25mm, or more, of stem infested in >20% plants
Turnip aphid	25mm, or more, of stem infested in >20% plants
Rutherglen bug	10 adults (or 20 nymphs) per plant
Native budworm	5-10 per m2 (larvae 10mm or longer)*
Diamond back moth	Unstressed Pre-flowering crops – 50 larvae per 10 sweeps
	Stressed Pre-flowering crops – 30 larvae per 10 sweeps
	Unstressed Flowering crops – 100-200 larvae per 10 sweeps

Source: VicDPI, Insectopedia, SARDI

* Dynamic threshold developed by DAFWA

Insecticide selection in canola

MOA		Canola aphids	DBM	Native budworm	Rutherglen Bug	Beneficial toxicity
11	Bt		<8mm	<8mm		Very Low
	NPV			<7mm		Very Low
	Petroleum spray oils	(s)	Mix Bt	(s)		Very Low
1A	Pirimicarb					Very Low
6	Emamectin					Mod
5	Spinetoram					Mod
1A	Methomyl		R?	WA		High
1B	OPs		R			High
3A	Pyrethroids		R			Very High

Registered R = resistance (s) = suppression **GRD**

Grains Research & Development Corporation

NPV for Helicoverpa?

Mean percentage NPV infection levels (± standard error) for (S + SM), ML and total larvae collected 2 DAT for the respective treatments.

Treatment	S + SM	ML	Combined Total
Unsprayed	24.6±7.2 a	8.3 ± 8.3	23.2±7.1 a
150 <u>mL Vivus</u> Max	88.3±3.5 b	16.7 ± 16.7	85.2±5.0 b
150 mL Vivus Max + 1.0 L Optimol	83.3±6.6 b	66.7 ± 23.6	83.5±6.7 b

Means in a column followed by the same letter are not significantly different (P>0.05). No letters indicate no significant difference.

Percentage NPV infection levels for (S + SM), ML and total larvae collected 2 DAT for the commercial application blocks.

Treatment	S+SM	ML	Combined Total
Spray Coupe - 150 <u>mL Vivus</u> Max	66.0	37.5	62.1
Pivot - 150 <u>mL Vivus</u> Max	64.8	26.1	58.0

In the Vivus treatment larval density declined from 7.3/row metre at 0 DAT to 0.7/row m at 16 DAT

