

Crop establishment pests

rporation

Key crop establishment pests

- > 40 invertebrate species threaten seedling establishment in crops and pastures
- Control tactics for these species presently relies heavily on the application of pesticides

Pest group	Example species				
Earth mites	redlegged earth mite, blue oat mite				
Lucerne flea	lucerne flea				
Slugs, snails	grey field slug, black keeled slug; white and conical snails				
Beetles & weevils	false wireworm, pasture cockchafers, mandalotus weevil				
Caterpillars	common cutworm, pasture webworm				
Other	earwigs, millipedes, slaters				

What are the IPM options for crop establishment?

- Cultural 🗸
- Biological ?
- Chemical

Key principles :

- Paddock histories and managing pre-season risk
- •Pest ID
- Strategic use of pesticides
- •All decisions underpinned by monitoring

Paddock histories and managing pre-season risk

GRDC Grains Research & Development Corporation

Grains Researc

orporation

Risk profiles for crop establishment

Example: Earth mites and lucerne flea

Full Risk profile table in printed resources

Make use of paddock histories

... helps with crop selection to reduce pest populations and negate the need for chemicals

- 'Resident' pests are more predictable with paddock history information (e.g. mites, LF, slugs, snails, cockchafers, false wireworm)
- 'Transient' pests (mobile across large distances) more difficult to predict (eg aphids, caterpillars)
- Records of paddock histories and soil type are particularly useful when planning to sow susceptible crops, such as canola

Decision Making Example or Integrated Pest Management Pre-season planning & crop Selection Number of mites in canola following 2 years of various crops

Be careful following pastures, unless mite populations were controlled in the previous spring

Micic et al. 2012. GRDC WA Updates

in Grain Crons

Pest identification is essential to making decisions

Decision Making Many similar looking pests^{for Integrated Pest Management} behave very differently!

RLEM I

BOM

Bryobia

ID and Seasonality?

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
RLEM												
BOM												
Balaustium												
Bryobia												

ID and Damage?

- 1. RLEM/blue oat mite
- 2. Slugs
- 3. Lucerne flea
 4. Balaustium mite
 5. Bryobia mite

- 1. RLEM/blue oat mite
- 2. Slugs
- 3. Lucerne flea
- 4. Balaustium mite

5. Bryobia mite

1. RLEM/blue oat mite

- 1. RLEM/blue oat mite 2. Slugs
 - 3. Lucerne flea
- 4. Balaustium mite
- 5. Bryobia mite

Strategic use of pesticides e.g. earth mites and lucerne flea

Grains Research & Development Corporation

Pre-season control of RLEM

- Reduces the carry-over of pest eggs (>95%)
- Timing of spray is critical
- Freely available tool

Timerite for RLEM (cont.)

- Residual chemicals needed to target later emerging eggs
- Timerite provides excellent control of RLEM, in autumn
- Not applicable to other mites and lucerne flea

Adapted from AWI Ltd: Timerite© Information Package (sourced from Bayer)

% increase in canola seedlings in Autumn

Tolerance to insecticides

Insecticide response curve: RLEM vs LF

Roberts et al. 2009. Aust. J Entomol.

orporation

Tolerance to insecticides

Insecticide response curve: comparison of mites

Arthur et al. 2008. Aust. J Exp. Agric.

Tolerance to insecticides for Integrated Pest Management In Grain Crops

chemical testing - summary

* = Tested as seed dressing only

Research with unregistered chemicals does not constitute a recommendation for that particular pest species. Chemicals have been largely tested against g a.i./L rather than at recommended application rates. All pesticide applications must accord with the currently registered label for that particular pesticide, crop, pest and region.

Tested actives

Organophosphates: omethoate, dimethoate, chlorpyrifos, phosmet, methidathion Synthetic pyrethroids: bifenthrin, alpha-cypermethrin, lambda-cyhalothrin, gammacyhalothrin, esfenvalerate Neonicotinoid: imidacloprid GRDC Grains Research & Development Corporation

poration

Insecticide resistance in RLEM

Chemical	Population	LC50 value	Resistance ratio
Bifenthrin	Control	0.03	\frown
	WA	6881.97	243,027
	Control	0.03	\sim
	WA (Gen 2)	7122.17	268,694
Alpha-cypermethrin	Control	0.02	
	WA	942.81	59,353
Omethoate	Control	0.10	
	WA	.26	

- Resistance also found to be heritable
- Resistance located > 20 properties in WA (>900 km apart)
- Movement is known between WA & east coast
- Implications: need for careful management of insecticides

Adapted from Umina 2007. Pestic. Sci

Grains Research &

Corporation

Decision timeline for earth mites & lucerne flea

* Also consider other sowing tactics (eg. increased seed density) ** Consider spot spraying for lucerne flea

Grains Research &

Development Corporation

Slugs: Need the full IPM 'arsenal'

- pest ID
- understand paddock history
- cultural control
- monitoring
- strategic use of baits

What drives slug numbers? Moisture!

Contributing factors :

- Previous paddock history/pop'n size
- Low/no cultivation
- Stubble retention (habitat & moisture)
- o Heavier soils (retain moisture)
- o Rainfall: >450mm/year
- Summer rainfall increases populations

Cultivation & slugs

- Cultivation reduces slug numbers
- Rolling also consolidates seed bed, restricts slug movement

Adapted from Nash et al. 2008. Biol. Control

Integrate: no one tactic is enough!

Cultural

Consider paddock history! Then:

- Burn; general cultivation
- Control summer volunteers
- Cultivate worst areas
- Plant early
- Roll to consolidate seedbed

Biological

Consider predators (eg carabid beetles) in use of sprays

Integrate: no one tactic is enough!

Chemical

- •Bait at/after sowing prior to emergence
- •25-30 baits /m² gives 80% chance encounter (don't skimp!)
- •Budget for at least two applications of bait in Canola
- •When to bait? No good if dry. No good if crop up either.

Grains Research &

Your GRDC working with you

Development Corporation

GR

Decision timeline for slugs

* Pending monitoring results

Establishment pests 'Best Bet' IPM strategy

rains Research &

nent Corporation

'Best Bet' example: Earth mites and lucerne flea

Full 'Best Bet' table in printed resources

Take home messages

- Crops most vulnerable at establishment, esp. canola and medics
- Planning pre-season is important (time constraints to monitor sufficiently at establishment period)
- We have the ability to foresee many establishment pest issues before they happen... as they are '**residents**'
- Monitoring & Pest ID are vital (eg. mites, weevils, scarabs)
- Early planting, stubble management, increasing sowing density and seedbed rolling are common cultural strategies
- Beneficial species often only play a support role at crop establishment (difference b/w crops & pastures)

