



## **Monitoring**

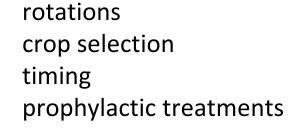
A decision-making tool

You can't manage it if you can't count it










## Monitoring in an IPM context

Broaden the perspective from focus on in-crop monitoring

Assessing risk – post and pre-season environmental drivers non-crop host abundance fallows pest abundance

#### **Planning**



#### **Keeping records**











Decision Making
for Insect Management
in Grain Crops

## **Summary of Monitoring Techniques**

| Pests              | Crop                           | Monitoring technique                          |
|--------------------|--------------------------------|-----------------------------------------------|
| Mites/lucerne flea | All seedling crops             | Visual/ vacuum sampling                       |
| Soil insects       | All seedling crops             | Soil sample/ germinating baits                |
| Aphids             | Canola, pulses, winter cereals | Visual, sticky traps                          |
| Armyworm           | Winter cereals                 | Sweep net (or bucket) Visual for damage/frass |
| Beetles/weevils    | Winter cereals                 | Pitfalls and visuals (often at night)         |
| Diamondback moth   | Canola                         | Sweep net (for larvae)                        |
| Etiella (moths)    | Lentils                        | Sweep net, pheromone traps                    |
|                    | Winter pulses/canola           | Sweep net/ cut and bash/ bucket               |
| Helicoverpa        | Summer pulses                  | Beat sheet                                    |
|                    | Sorghum                        | Shake heads in bucket                         |
| Mirids             | Summer pulses                  | Beat sheet                                    |
| Pea weevil         | Field peas                     | Sweep net                                     |
| Pod sucking bugs   | Summer pulses                  | Beat sheet                                    |
| Rutherglen bug     | Sunflower, sorghum, canola     | Bucket, visual (seedlings)                    |
| Slugs              | All crops                      | Shelter traps                                 |
| Sorghum midge      | Sorghum                        | Visual                                        |
| Whitefly           | Sunflower, summer pulses       | Visual GRDC Gr                                |

GRDC Grains Research & Development Corporation

Your GRDC working with you



# What are some of the issues you have with monitoring?

Frequency of sampling

Sampling strategy

**Patchy distribution** 

**How many samples?** 

Migrant pests – when to start monitoring

Night active pests and soil dwelling pests

<u>Very low thresholds</u> – do I need to bother with sampling?

Monitoring beneficials

**Record keeping** 





### Frequency of sampling



#### **Frequency of sampling** – key considerations

#### Risk

- Seasonal pest abundance
- Crop susceptibility/vulnerability
- Management/control options
- Response time

#### Environmental factors

- Temperature
  - rate of crop growth
  - Rate of pest population growth
- Rainfall
  - Can reduce pest populations
  - Make sampling difficult/impossible

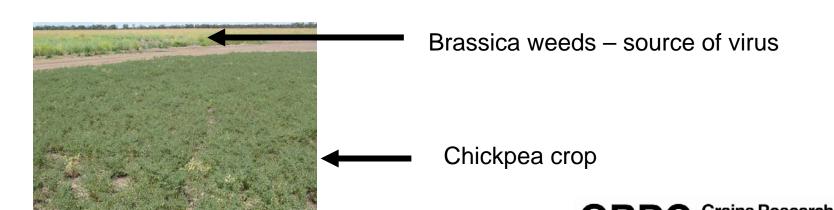






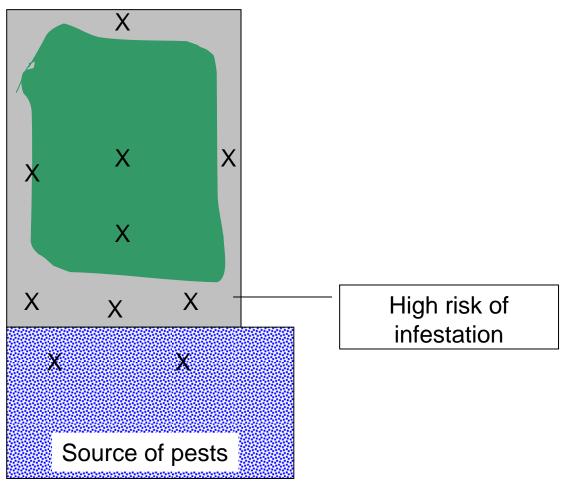
## Sampling strategy




#### The number of samples and sampling plan

**Completely random** is not always appropriate

- Patchy distribution of pests (aphids, green vegetable bug)
  Invasion from the edge (mites, aphids, pea weevil, Rutherglen bug)


#### **Stratified random sampling** – improves the population estimate

Based on knowledge of likely pest distribution









X = sampling points







## Patchy distribution in the field

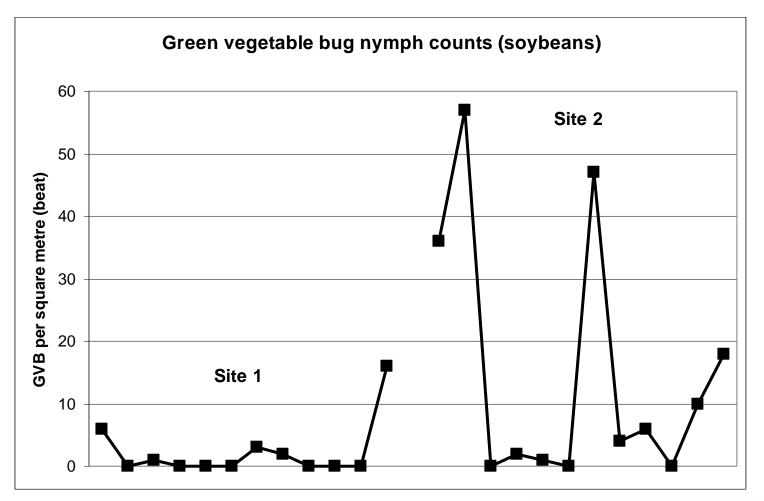
#### Patchiness can be a result of:

#### **Pest biology**

reproduction, infestation and rate of dispersal = hotspots

#### Crop

differences in growth/attractiveness, uneven maturity


### Random sampling best for patchy pests





## Decision Making for Insect Management in Grain Crops

# How patchiness can influence estimates in Grain Crops of pest numbers: Green vegetable bug







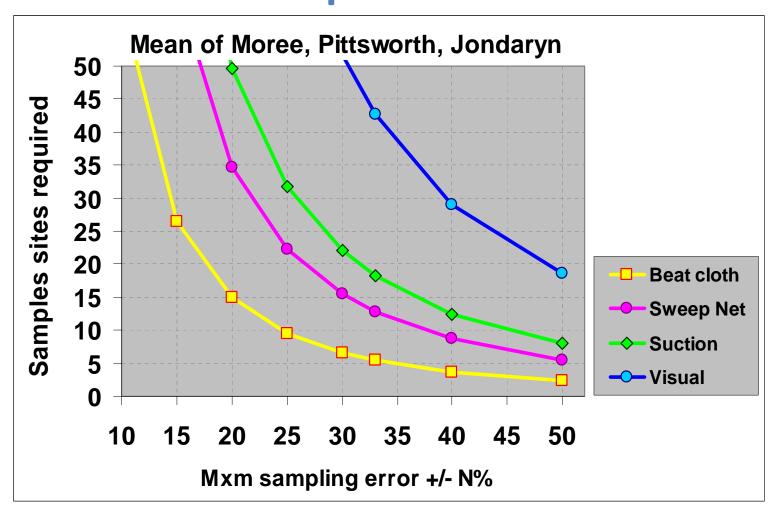
## **How many samples?**



Always a compromise between time and precision.

#### Be aware of the variability between samples when averaging

- can be minimised by using an appropriate sampling strategy and technique for the target pest
- experience with the pest can guide


Confidence (in the estimate) critical as the pest population approaches threshold.





## Decision Making for Insect Management in Grain Crops

# Sampling error and number of samples







### Migrant pests – when to start monitoring?

e.g. Helicoverpa, Etiella

Pre-emptive monitoring pheromone traps (helicoverpa sp, Etiella)

#### Models to predict likely timing of infestations

Cottassist H. armigera emergence model

Pheromone trap for Etiella (SARDI)

(http://cottassist.cottoncrc.org.au/DIET/about.aspx)

Day degree model for Etiella (www.sardi.sa.gov.au)



Or When the crop is susceptible







## The pest is only active at night or below ground

#### **Traps**

Shelter traps (snails, slugs)

#### **Baits**

Germinating seed baits (false wireworm)



**Visual examination** of soil, stubble around plants where they shelter during the day (cutworm, armyworm, slugs, snails).....or at night!



**Pre-sowing checks for soil insects!** 







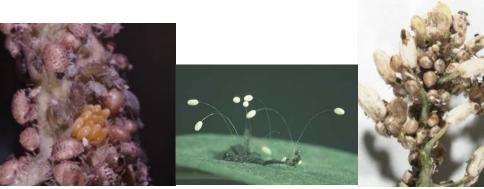
### The threshold is very low

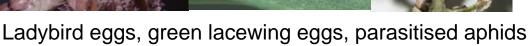
– do I need to bother with sampling?

#### Risks of not sampling

- applying insecticide when not needed
- timing of action early or late
- missing other pests
- missing the impact of beneficials/weather







## Monitoring beneficials


### Sample when sampling for pests

#### **Observe:**

- Beneficials (eggs, adults and juveniles)
- Parasitism (aphid mummies)
- Parasitised eggs
- Changes in pest populations over time







**Decision Making** 





Predatory earwig, parasitised armyworm





## Record keeping

#### **Essential for:**

- Estimating pest densities (assessing variability)
- Reviewing trends in pest populations
- Post-treatment assessments
- Assessing risk from season to season
- Planning
- Learning







Hoverfly larva 'sampling' aphids



## Sampling for earth mites



#### **Assess risk**



#### Sampling strategy

How often to check
Sampling technique
Number of samples
Where to sample
When to sample (time of day)



**Additional considerations** 

