

Integrated Pest Management in Mungbeans and Soybeans

Overall pulse pest management aims

- 1. Protect yield/quality in an economically rational manner use thresholds
- 2. Avoid pesticide resistance observe pesticide resistance guidelines
- 3. Foster farming systems that suppress pests, not generate pests beneficials, cultural, host resistance, thresholds

Mungbeans, a brief description

- Short-season, indeterminate tropical pulse
- Seed quality critical to achieve to top \$\$
- IPM IS CHALLENGING BUT -----
- NOT IMPOSSIBLE
- Recent problem pests bean pod borer, etiella

- A longer season summer pulse/oilseed
 - Determinate cultivars in northern Australia
 - Indeterminate cultivars in southern Australia
- More tolerant of pests than other pulses
- Seed quality critical for edible market
- IPM driven by SLW/mites
- Recent problem pests etiella, podsuckers

Mungs in particular a fast crop so beat sheet regularly!

Monitor pests, beneficials & crop stage

Key mungbean/soybean pests

Attack leaves, buds, flowers & pods

Suck pods reducing seed quality

Attack buds, flowers, pods
Major tropical mungbean
pest

Threaten soybeans but not mungbeans. Flared by hard pesticides

Attack buds, flowers
Major mungbean pest
but not in soybeans

Lesser pests

Mainly leaf feeders but can attack flowers

Mungbeans only. Infest stems & pods

Soybeans only. Above threshold ppns. delay harvest maturity

Seedlings & flowers

Under leaves – flared by hard pesticides

Soybeans only. Common at low densities but spasmodically occurs in huge numbers

Integrated Pest Management? What cards do we have?

- Paddock selection to avoid/minimize pests
- Best practice agronomy increases pest tolerance
- Conserve natural enemies free control by using 'more-selective' 'softer' pesticides
- Only spray above-threshold pest populations saves \$\$ and conserves natural enemies

IPM best bets/opportunities

Vegetative mungbeans & soybeans - loopers

- Tolerance of early damage opens door for biopesticides
- Up to 33% looper defoliation no yield loss
- Bt (Dipel) effective against loopers

Grass blue butterfly slug like larva

Lop terminals & buds
Bt a soft option

e for Insect Management in Grain Crops

Why might NPV (Vivus, Gemstar) be the [™] preferred heli option in vegetative crops?

- 1. Resistance management
- 2. Conserve beneficials
- 3. Conserve 'big guns' for flowering/podding stages
- 4. Don't need to kill every heli in vegetative stage
- 5. No yield loss if up to 7/m² soys & 4-5/m² mungbeans

Heli NPV in vegetative soybeans and mungbeans

Decision Making
for Insect Management
in Grain Crops

- Timely detection
- 'Optimal' adjuvant, timing & good coverage

Vegetative soybeans – Helicoverpa IPM target - Keep larvae <7/m²

Etiella damage in vegetative soybeans?

Watch for unusual symptoms

Your GRDC working v

Reduced stem length = fewer pods

Etiella damage in podding soybeans

Etiella in late soybeans?

- Early damage hard to pick
- Most larvae only eat 1 seed (0.2g)
- Theoretical threshold high –
 40/m² for \$45/ha pesticide*
- Threshold academic as larvae very difficult to control once inside pods
- Moth repellents??
 - * Includes application

Etiella in budding mungbeans Downs Jan 2014

Please report any suspicious webbing of buds/flowers

Entry hole – very small Exit hole – the bird has flown

Etiella in pods are unreachable

Etiella pod damage in mungs

Nacician Making

The etiella IPM conundrum

- Once in stems/pods, larvae difficult if not impossible to control
- Larvae/damage often not detected until infestation well entrenched
- Monitor for moths? Pre-emptive action?
- Early SP use will flare mites, SLW, helis
- Early use of softer alternatives being investigated
- Resistance threat watch this space

IPM best bets/opportunities Mirids in mungbeans at budding/flowering/podset

 Optimize spray timing & consider lower dimethoate rates with salt adjuvant

Scenario 1:

Mirids are at threshold & helis are below threshold in early flowering mungbeans

- No net gain if spray as mirids are at 'break even'
- Full dimethoate rate can flare helicoverpa
- Re-assess in 4 days time
- If mirids increase markedly, consider low rate dimethoate + salt adjuvant (0.5%)

Further information to consider for Scenario 1

Scenario 1 background information

Low rate dimethoate (250mL/ha) has far less impact on most beneficials

Economic Threshold Table for Mirids Decision Making for Insect Management in Grain Crop in Grain Crop

Control Cost \$/ha		Threshold (adults + nymphs/m²) at crop values below					
		\$ 400	\$ 500	\$ 600	\$ 700	\$ 800	\$ 900
\$	10	0.4	0.3	0.3	0.2	0.2	0.2
\$	15	0.6	0.5	0.4	0.4	0.3	0.3
\$	20	0.8	0.7	0.6	0.5	0.4	0.4
\$	25	1.0	0.8	0.7	0.6	0.5	0.5
\$	30	1.3	1.0	0.8	0.7	0.6	0.6
\$	35	1.5	1.2	1.0	0.8	0.7	0.6
\$	40	1.7	1.3	1.1	1.0	0.8	0.7

- Cross-reference Control Cost vs Crop Value
- For Cost of Control = \$15/ha & Crop Value = \$700/t, ET =0.4
- Threshold based on mirid damage in crop for up to 4 weeks

Just remember

- Mirid thresholds are low because dimethoate is cheap
- Mirid thresholds are based on sustained attack over 28 days – i.e. in this scenario: 0.4 mirids over 28 days

Dimethoate @ 500mL/ha can increase the risk of subsequent helicoverpa attack

Mirids in mungbeans

- Budding/flowering/podset

- Delaying a mirid spray !!***##
- This is heresy!
- Show us the data!

Mungbean yields where 1st mirid spray applied progressively later at weekly intervals from flowering (W1) onwards.

No yield loss despite starting population of 2.3 mirids/m²

Mungbeans

Can delay 1st mirid spray slightly by up to 7 days with no \$\$ loss – if mirid ppn. not too high

IPM best bets/opportunities Budding/flowering/podset

Mirids in soybeans?

- Far more tolerant than mungbeans
- Usually no need to spray as ET is 5/m²

IPM best bets/opportunities Podfill/Pod ripening Helicoverpa

- Indoxacarb preferred option
- Lower impact (softer) on parasitoids
 & bug predators than carbamates
- SP's ineffective against H armigera
- Observe thresholds see following tables

Economic Threshold Table for Helicoverpa in Podding Mungbeans

Control Cost \$/ha		Threshold (larvae/m²) at crop values listed below (\$/t)												
		\$	400	\$	500	\$	600	\$	700	\$	800	\$	900	\$ 1,000
\$	15		1.1		0.9		0.7		0.6		0.5		0.5	0.4
\$	20		1.4		1.1		1.0		0.8		0.7		0.6	0.6
\$	25		1.8		1.4		1.2		1.0		0.9		0.8	0.7
\$	30		2.1		1.7		1.4		1.2		1.1		1.0	0.9
\$	35		2.5		2.0		1.7		1.4		1.3		1.1	1.0
\$	40		2.9		2.3		1.9		1.6		1.4		1.3	1.1
\$	45		3.2		2.6		2.1		1.8		1.6		1.4	1.3
\$	50		3.6		2.9		2.4		2.0		1.8		1.6	1.4

- Cross-reference cost of control vs crop value
- For Cost of Control = \$40/ha & Crop Value = \$700/t, ET = 1.6

New registration for caterpillars in pulses

- Altacor ® is now the best of registered products
- Within 2 weeks, methomyl back at pre-spray levels

Altacor harder on caterpillars, softer on beneficials

Podfill/Pod ripening Podsucking bugs

Green vegetable bug

- No effective soft options
- Deltamethrin ® (SP) GVB

- Shield permit 12699 GVB & redbanded (LAPSED)
- Delay 1st spray till early podfill
- By then lower risk of SLW or mites

Economic thresholds for podsucking bugs in mungbeans (and soybeans) are higher in high yielding crops.

Potential yield (t/ha)	0.25	0.5	1.0	1.5	2.0	2.5	3.0	3.5
GVBAEQ /m ²	0.1	0.2	0.3	0.5	0.7	0.9	1.1	1.4

Because thresholds are based on % seed damage & there are more seeds in higher yielding crops.

Mungbean thresholds based on GVBAEQ to give 2% seed damage

Economic thresholds for podsucking bugs in mungbeans and soybeans – Now in on-line threshold calculator

Simply google "Beat Sheet Blog"

Skip to content About the Beatsheet Links Terms of use DAFF Entomology contacts Resources Economic Threshold Calculators

And select 'Economic Threshold Calculators'

- Leave unsprayed strip/s and monitor pests prior to and post spray till harvest
- Assess yield, time to harvest, and evenness of maturity

IPM Summary Mungs & Soys

- Sample regularly to detect the early stages of pest infestations and critical crop stages
- 'Go soft early' wherever possible
- Conserve beneficials by:-
- Only spraying above threshold pest ppns.
- And using selective pesticides where possible
- Delay hard pesticides as long as possible

