

Crop establishment pests

Contents

- IPM options for crop establishment pests
- Management of earth mites and lucerne flea
- Millipedes, earwigs & slaters
- False wireworms and beetles
- Mandalotus weevils
- "Best Bet" example
- Take home messages

Why look at crop establishment?

- Crop establishment is the most susceptible growth stage of plant development to pests & can also be the challenging period for applying IPM
- Canola, medics and clovers are generally more susceptible to insect attack compared with cereals, grasses and pulses

Key crop establishment pests

- > 40 invertebrate species threaten seedling establishment in crops and pastures
- Control tactics for these species presently relies heavily on the application of pesticides

Pest group	Example species
Earth mites	redlegged earth mite, blue oat mite
Lucerne flea	lucerne flea
Slugs, snails	grey field slug, black keeled slug; white and conical snails
Beetles & weevils	false wireworm, pasture cockchafers, mandalotus weevil
Caterpillars	common cutworm, pasture webworm
Other	earwigs, millipedes, slaters

What are the IPM options for crop establishment?

- Cultural
- Biological ?
- Chemical can we be more strategic?

Key principles:

- Paddock histories and managing pre-season risk
- Pest ID
- Cultural techniques
- Strategic use of pesticides
- Decisions underpinned by monitoring

Paddock histories and managing pre-season risk

Risk profiles for crop establishment

Example: Earth mites and lucerne flea

High risk		Re	duced risk	Lo	w risk
 Fore cool, that grow Past crop Susc bein 	cast for dry or wet conditions slow crop th ure going into eptible crop g planted ola, pasture,		Thin/sparse pasture in the previous spring Low weeds in paddocks and along fence-lines Higher sowing rate used Optimal plant growing conditions during establishment	<u> </u>	Following a cereal or pulse paddock with low weeds Sandy soils (lucerne flea only)

Make use of paddock histories

... helps with crop selection to reduce pest populations and negate the need for chemicals

- 'Resident' pests are more predictable with paddock history information (e.g. mites, LF, slugs, snails, cockchafers, false wireworm)
- 'Transient' pests (mobile across large distances) more difficult to predict (eg aphids, caterpillars)
- Records of paddock histories and soil type are particularly useful when planning to sow susceptible crops, such as canola

Example

Pre-season planning & crop selection

Number of **mites** in canola following 2 years of various crops

 Be careful following pastures, unless mite populations were controlled in the previous spring

Back

Management of earth mites and lucerne flea

Beneficials / Natural enemies

Effectiveness

- Pastures
- Native predator complex suppress spring RLEM peak (James 1995)
- Anystis (RLEM) and Spiny snout (LF) mites most effective
 - 80% (RLEM) and 60% (LF) control (Michael 1995)
 - 93% LF in autumn with >25/m2 (Ireson 2006)
- But effectiveness is patchy!!

RLEM and native predators in a Leeton pasture

From James 1995

Pre-season control of RLEM

http://www.worpperfile@@imerite.htm

- Reduces the carry-over of pest eggs (>95%)
- Timing of spray is critical
- Freely available tool

Timerite for RLEM (cont.)

- Residual chemicals needed to target later emerging eggs
- Timerite provides excellent control of RLEM, in autumn
- Not applicable to other mites and lucerne flea

% increase in canola seedlings in Autumn

Adapted from AWI Ltd: Timerite© Information Package (sourced from Bayer)

Tolerance to insecticides

Insecticide response curve: RLEM vs LF

Tolerance to insecticides

Insecticide response curve: comparison of mites

cesar chemical testing (tolerance)

Chemical	RLEM*	BOM*	Bal.	Bry.	LF*
Omethoate (eg. LeMat)					
Dimethoate (eg Dimethoate)				?	
Chlorpyrifos (eg. Lorsban)					
Phosmet (eg. Imidan)					
Bifenthrin (eg. Talstar)					
Alpha-cypermethrin (e.g Fastac)					
Lambda-cyhalothrin (eg. Karate)					
Gamma-cyhalothrin (eg. Trojan)					
Esfenvalerate (eg. Sumi Alpha)				?	
Methidathion (eg. Suprathion)					
Imidacloprid (eg. Gaucho)**				?	?

^{*} Other pesticide products are registered

^{**} Tested as seed dressing only

Tolerance to insecticides chemical testing

Research with unregistered chemicals does not constitute a recommendation for that particular pest species. Chemicals have been largely tested against g a.i./L rather than at recommended application rates. All pesticide applications must accord with the currently registered label for that particular pesticide, crop, pest and region.

Latest on controlling Balaustium Decision Making for Integrated Pest Management mites

The majority of chemical treatments have limited impact

Insecticide resistance in RLEM

- RLEM have been controlled using chemicals for > 50 years in Australia
- In 2006, chemical control failures experienced at 1 location
- 4 separate applications over a period of 3 weeks
- Paddock history: repeated applications of synthetic pyrethroids > 5 years

Insecticide resistance in RLEM

Chemical	Population	LC50 value	Resistance ratio
Bifenthrin	Control	0.03	
	WA	6881.97	243,027
	Control	0.03	
	WA (Gen 2)	7122.17	268,694
Alpha-cypermethrin	Control	0.02	
	WA	942.81	59,353
Omethoate	Control	0.10	
	WA	.26	

- Resistance also found to be heritable
- Resistance located > 20 properties in WA (>900 km apart)
- Movement is known between WA & east coast
- Implications: need for careful management of insecticides

Adapted from Umina 2007. Pestic. Sci

Current status of field resistance

Umina, Weeks, Roberts, Jenkins, Mangano, Lord & Micic, 2012

- 26 paddocks (from 15 properties) identified with resistance between 2007-10
- Another 23 paddocks detected since 2011

Decision Making for Integrated Pest Management in Grain Crops

Decision timeline for earth mites & lucerne flea

Cultural Chemical control control Monitoring **Pasture** Bare earth Crop Seed selection treatments treatments grazing **Timerite** Post emergent **Early** treatments** for RLEM sowing* **Previous** Summer Winter Autumn spring Sowing

* Also consider other sowing tactics (eg. increased seed density)

** Consider spot spraying for lucerne flea

'Best Bet' example: Earth mites and lucerne flea

Pre-season (previous spring/summer)	Pre-sowing	Emergence	Crop establishment
Assess risk High risk when: • History of high mite pressure • Pasture going into crop • Susceptible crop being planted (eg. canola, pasture) • Seasonal forecast is for dry	If high risk: • Use seed dressing on susceptible crops • Plan to monitor more frequently until crop establishment • Use higher sowing rate to compensate for seedling	 Monitor susceptible crops through to establishment (direct visual searches) Be aware of edge effects; mites move in from weeds around paddock edges If spraying: 	• As the crop grows, it becomes less susceptible unless growth is slowed by dry or cool, wet conditions
or cool, wet conditions that slow crop growth. If risk is high: • Ensure accurate ID • Use Timerite (RLEM) • Heavily graze pastures in early-mid spring	 Consider scheduling a post-emergent insecticide treatment If low risk: Avoid seed dressings (esp. cereals/pulses) & plan to monitor until crop establishment 	 Ensure accurate ID before deciding on chemical Consider border sprays (mites) and 'spot' sprays (lucerne flea) Spray prior to the production of winter eggs to suppress populations and reduce risk in the following season 	

Millipedes, earwigs & slaters

Increasing pest prevalence

 Earwigs, millipedes and slaters have increased in pest status over the last 4-5 years in SE Australia

Total pest reports received from PestFacts subscribers from SA, Vic and NSW since 2006

	2006	2007	2008	2009	2010	2011	2012	2013
Earwigs	1	0	0	0	4	5	7	5
Millipedes	3	1	0	1	7	8	2	2
Slaters	0	1	2	0	4	4	5	8

- This increase has been linked to stubble retention, no-till farming practices and improvements in soil organic matter, which have provided a more favourable habitat
- Damage has been reported mainly in the medium and high rainfall zones, including Wimmera and Western Districts in Victoria

Lifecycle/description

- Adults 20 mm long
- Communal
- Easily confused with beneficial earwigs

Damage

- Adults and nymphs attack canola, lupins, cereals
- Associated with heavier soils, stubble
- Irregular chewing of leaves, cotyledons, stems (similar to slug damage)
- Can also chew through seed pods; and occasionally are a grain contaminant
- Nocturnal feeders (inspect at night)

Earwigs: the good & the bad

Forficula auricularia EUROPEAN EARWIGS

PEST

- 12 24 mm long
- Uniform, dark colour body
- Legs & pincers lighter than the body

Gonolabis michaelseni NATIVE EARWIG

BENEFICIAL

- Lighter fore body, darker abdomen
- Legs & pincers similar colour to other parts of the body

Labidura truncata COMMON BROWN EARWIG

BENEFICIAL

- 35 mm long
- Dull brown with straw coloured markings
- Orange triangle on the back

European earwigs - management

- Cultural removing the shelter
 - Stubble burn
 - Weed control
 - Cultivation
 - Grazing pastures to <1.5 t/ha in Spring
- Biological
 - Carabid beetles
 - Birds & lizards
- Chemical:
 - Nothing registered in broadacre crops
 - Some chemicals registered in horticulture (carbaryl, chlorpyrifos)
 - Seed dressings may give some control

Black Portuguese millipedes

Lifecycle/description

- Active in autumn and spring
- 2 years to sexual maturity
- Easily distinguishable from native species

Damage

- Mainly organic matter feeder, attacks canola and cereals
- Associated with black organic soils (although damage has occurred on lighter soils)
- Foliar grazing, cotyledons/leaves (relatively rare)
- Nocturnal feeders
- Large numbers? Damage?

Slaters/ Pill bugs

Lifecycle/description

- Crustations related to crabs and lobsters; terrestrial but moisture dependent
- Stubble provides a cool, moist habitat; crumbly clay soil surfaces aid their survival
- Feed on decaying vegetable and animal matter
- The flood bug (Australiodillo bifrons) slater species can swarm
- Prevention is best

Damage

- Cereals, canola and lentils
- Chew base or tips of seedlings

Managing trash feeders: thinking ahead

Risk is increased in:

- Canola
- Heavy organic soils that retain moisture
- Stubble retention / high loads
- Wetter weather patterns
- Poor germination / slow plant growth
- High populations last spring

To reduce losses:

- Understand the culprit!
- Monitor prior to sowing (traps)
- Manage / burn stubbles (timing!)
- Sow other crops (not canola)
- Rapid establishment
 - High vigour varieties
 - Higher seeding rates
- Few registered insecticides
 - Difficult to control with SPs and OPs
 - Fipronil and imidacloprid some seed registrations (see Fact Sheet)
 - Methiocarb baits offer some control in horticulture

False wireworms and beetles

FWW and (adult) beetles species

		Size range	Larval colour			
'Smaller' false wireworms a	and beetles					
Bronzed field beetle larvae	Adelium brevicorne	9-12 mm	Shiny grey			
Grey false wireworm	Isopteron aversum	10-12mm	Grey green flattened			
Vegetable beetle	Gonocephalum elderi	10 mm	Brown			
'Larger' false wireworms and beetles						
Eastern false wireworm	Pterohelaeus spp.	50 mm	Light brown			
Southern false wireworm	Gonocephalum misellum	20mm	Cream brown			

Bronzed field beetle (BFB)

Lifecycle/description

- Native species, soil dwelling
- Common in <u>and on</u> fine textured soils high in organic matter
- Favoured by stubble retention, trash (shelter/ breeding)
- Adult beetle lay eggs in late Feb/March

Damage

- >5 adults/m2 under carpet squares pre-sowing
- Larvae ringbark seedling & sever the hypocotyl of young seedlings
- Adults feed on decaying organic matter

Bronzed field beetle

Cultural control

Remove plant residues / trash by late February (before eggs are

laid)

Un-raked plots

Raked plots

Reducing harvest contamination

- Preventing/controlling the autumn population
- Avoid leaving windrows on the ground too long
- Harvest in the hottest part of the day

Vegetable beetle

Lifecycle/description

- Larvae 10 mm (brown) rarely seen above the soil surface
- Adults 8 mm long, flattened, usually dull grey, but sometimes brown / black. Often with soil on their backs
- One generation per year

Damage

- Adults may attack emerging canola
- Larvae damage cereals
 - o hollow out seeds
 - attack roots or ringbark seedling at or below the soil surface

Managing false wireworm/beetles

Cultural

1. Crop choice

• Sow less susceptible crops, e.g. cereals or pulses

2. Seedbed preparation

- Remove crop residue in Feb
- Monitor adult activity before sowing canola (carpet square or baits)

3. Sowing

- Compaction good soil/seed contact
- Early seeding date
- (if risk) higher seeding rates

Insecticides

 Seed dressings have limited benefit for these pests

Mandalotus weevils

Mandalotus weevils (multiple spo.) Decision Making Mandalotus weevils (multiple spo.) In Grain Crops

- Largest Australian weevil genus
 - 152 described species
- Endemic, mainly SE Australia
- Taxonomy not defined

Adults

- 3-5 mm long, flightless, dull grey-brown
- Attack seedlings of canola, cereals, pulses in autumn
- Mainly lighter soils

Damage - worst in canola

- Adults chew stems, leaves, cotyledons, ringbark/ lop young seedlings
- Often first noticed 1 week after emergence
- Damage occurs <u>rapidly</u> intervene immediately

Usually patchy (SA mallee 2013)

Damage in lentils, 2010

Typical ring-barking of canola seedlings

Crop damage

Canola destroyed at Bowhill, SA, 2003

Sometimes large areas (Ardrossan SA 2009)

Crop damage - # reports

Crop damage reports in SA, Vic and NSW 2006-2012 (Perry, Umina)

Decision Making for Integrated Pest Management in Grain Crops

Mandalotus distribution

Identification

• Over 10 species, only 2 currently identified, some undescribed

• 3-5mm, resemble clod of dirt, often rows of thick paddle-

shaped hairs on the back

Identification

M. puncticollis (common in Vic)

M. crawfordi (common in SA mallee)

Monitoring and assessing risk

- Paddock history (areas of paddocks with previous problems, little insecticide use)
- Soil type/region lighter calcareous
- Hard to find. Check under weeds and grasses from early April – best after rainfall

Biology - lifecycle

- Sexual reproduction, one generation per year
- Critical period is May/June (peak adult emergence)

Biology - over-summering

Adults 'hibernate' deep in the soil over summer

Presence of adults in the soil profile (Perry, DeGraaf)

Management

- Difficult not practical during non-crop period (adults hibernate well below ground)
- Current best bet: Chemical control <u>in high risk</u> <u>areas</u> (see next slides)
 - Region/soil type
 - Paddock history
 - Canola not sown before!
- Monitor carefully at 1 week after emergence, check until 4 leaf stage

Chemical control - seed treatments

Recapture = 56% Mean n = 40

K. Perry 2013

Chemical control – bare earth sprays

* χ^2 p < 0.05 within site

Establishment pests 'Best Bet' IPM strategy

Take home messages

- Crops most vulnerable at establishment, esp. canola and medics
- Planning **pre-season** is important (time constraints to monitor sufficiently at establishment period)
- We have the ability to foresee many establishment pest issues before they happen... as they are 'residents'
- Monitoring & Pest ID are vital (eg. mites, weevils, scarabs)
- Early planting, stubble management, increasing sowing density and seedbed rolling are common cultural strategies
- Beneficial species often only play a support role at crop establishment (difference b/w crops & pastures)

