Crop establishment pests ## Contents - IPM options for crop establishment pests - Management of earth mites and lucerne flea - Millipedes, earwigs & slaters - False wireworms and beetles - Mandalotus weevils - "Best Bet" example - Take home messages # Why look at crop establishment? - Crop establishment is the most susceptible growth stage of plant development to pests & can also be the challenging period for applying IPM - Canola, medics and clovers are generally more susceptible to insect attack compared with cereals, grasses and pulses ## Key crop establishment pests - > 40 invertebrate species threaten seedling establishment in crops and pastures - Control tactics for these species presently relies heavily on the application of pesticides | Pest group | Example species | |-------------------|--| | Earth mites | redlegged earth mite, blue oat mite | | Lucerne flea | lucerne flea | | Slugs, snails | grey field slug, black keeled slug; white and conical snails | | Beetles & weevils | false wireworm, pasture cockchafers, mandalotus weevil | | Caterpillars | common cutworm, pasture webworm | | | | | Other | earwigs, millipedes, slaters | # What are the IPM options for crop establishment? - Cultural - Biological ? - Chemical can we be more strategic? ### Key principles: - Paddock histories and managing pre-season risk - Pest ID - Cultural techniques - Strategic use of pesticides - Decisions underpinned by monitoring # Paddock histories and managing pre-season risk # Risk profiles for crop establishment Example: Earth mites and lucerne flea | High risk | | Re | duced risk | Lo | w risk | |--|--|----|--|----------|--| | Fore cool, that grow Past crop Susc bein | cast for dry or
wet conditions
slow crop
th
ure going into
eptible crop
g planted
ola, pasture, | | Thin/sparse pasture in the previous spring Low weeds in paddocks and along fence-lines Higher sowing rate used Optimal plant growing conditions during establishment | <u> </u> | Following a cereal or pulse paddock with low weeds Sandy soils (lucerne flea only) | ## Make use of paddock histories ... helps with crop selection to reduce pest populations and negate the need for chemicals - 'Resident' pests are more predictable with paddock history information (e.g. mites, LF, slugs, snails, cockchafers, false wireworm) - 'Transient' pests (mobile across large distances) more difficult to predict (eg aphids, caterpillars) - Records of paddock histories and soil type are particularly useful when planning to sow susceptible crops, such as canola # Example ## Pre-season planning & crop selection Number of **mites** in canola following 2 years of various crops Be careful following pastures, unless mite populations were controlled in the previous spring Back # Management of earth mites and lucerne flea # Beneficials / Natural enemies #### Effectiveness - Pastures - Native predator complex suppress spring RLEM peak (James 1995) - Anystis (RLEM) and Spiny snout (LF) mites most effective - 80% (RLEM) and 60% (LF) control (Michael 1995) - 93% LF in autumn with >25/m2 (Ireson 2006) - But effectiveness is patchy!! #### RLEM and native predators in a Leeton pasture From James 1995 ## **Pre-season control of RLEM** ## http://www.worpperfile@@imerite.htm - Reduces the carry-over of pest eggs (>95%) - Timing of spray is critical - Freely available tool ## Timerite for RLEM (cont.) - Residual chemicals needed to target later emerging eggs - Timerite provides excellent control of RLEM, in autumn - Not applicable to other mites and lucerne flea ## % increase in canola seedlings in Autumn Adapted from AWI Ltd: Timerite© Information Package (sourced from Bayer) ## **Tolerance to insecticides** Insecticide response curve: RLEM vs LF ## Tolerance to insecticides Insecticide response curve: comparison of mites # cesar chemical testing (tolerance) | Chemical | RLEM* | BOM* | Bal. | Bry. | LF* | |---------------------------------|-------|------|------|------|-----| | Omethoate (eg. LeMat) | | | | | | | Dimethoate (eg Dimethoate) | | | | ? | | | Chlorpyrifos (eg. Lorsban) | | | | | | | Phosmet (eg. Imidan) | | | | | | | Bifenthrin (eg. Talstar) | | | | | | | Alpha-cypermethrin (e.g Fastac) | | | | | | | Lambda-cyhalothrin (eg. Karate) | | | | | | | Gamma-cyhalothrin (eg. Trojan) | | | | | | | Esfenvalerate (eg. Sumi Alpha) | | | | ? | | | Methidathion (eg. Suprathion) | | | | | | | Imidacloprid (eg. Gaucho)** | | | | ? | ? | ^{*} Other pesticide products are registered ^{**} Tested as seed dressing only # Tolerance to insecticides chemical testing Research with unregistered chemicals does not constitute a recommendation for that particular pest species. Chemicals have been largely tested against g a.i./L rather than at recommended application rates. All pesticide applications must accord with the currently registered label for that particular pesticide, crop, pest and region. # Latest on controlling Balaustium Decision Making for Integrated Pest Management mites The majority of chemical treatments have limited impact ## Insecticide resistance in RLEM - RLEM have been controlled using chemicals for > 50 years in Australia - In 2006, chemical control failures experienced at 1 location - 4 separate applications over a period of 3 weeks - Paddock history: repeated applications of synthetic pyrethroids > 5 years ## Insecticide resistance in RLEM | Chemical | Population | LC50 value | Resistance ratio | |--------------------|------------|------------|------------------| | Bifenthrin | Control | 0.03 | | | | WA | 6881.97 | 243,027 | | | Control | 0.03 | | | | WA (Gen 2) | 7122.17 | 268,694 | | Alpha-cypermethrin | Control | 0.02 | | | | WA | 942.81 | 59,353 | | Omethoate | Control | 0.10 | | | | WA | .26 | | - Resistance also found to be heritable - Resistance located > 20 properties in WA (>900 km apart) - Movement is known between WA & east coast - Implications: need for careful management of insecticides Adapted from Umina 2007. Pestic. Sci ### **Current status of field resistance** Umina, Weeks, Roberts, Jenkins, Mangano, Lord & Micic, 2012 - 26 paddocks (from 15 properties) identified with resistance between 2007-10 - Another 23 paddocks detected since 2011 # Decision Making for Integrated Pest Management in Grain Crops # Decision timeline for earth mites & lucerne flea **Cultural** Chemical control control Monitoring **Pasture** Bare earth Crop Seed selection treatments treatments grazing **Timerite** Post emergent **Early** treatments** for RLEM sowing* **Previous** Summer Winter Autumn spring Sowing * Also consider other sowing tactics (eg. increased seed density) ** Consider spot spraying for lucerne flea ## 'Best Bet' example: Earth mites and lucerne flea | Pre-season (previous spring/summer) | Pre-sowing | Emergence | Crop
establishment | |---|--|---|---| | Assess risk High risk when: • History of high mite pressure • Pasture going into crop • Susceptible crop being planted (eg. canola, pasture) • Seasonal forecast is for dry | If high risk: • Use seed dressing on susceptible crops • Plan to monitor more frequently until crop establishment • Use higher sowing rate to compensate for seedling | Monitor susceptible crops
through to establishment
(direct visual searches) Be aware of edge effects;
mites move in from weeds
around paddock edges If spraying: | • As the crop grows, it becomes less susceptible unless growth is slowed by dry or cool, wet conditions | | or cool, wet conditions that slow crop growth. If risk is high: • Ensure accurate ID • Use Timerite (RLEM) • Heavily graze pastures in early-mid spring | Consider scheduling a post-emergent insecticide treatment If low risk: Avoid seed dressings (esp. cereals/pulses) & plan to monitor until crop establishment | Ensure accurate ID before deciding on chemical Consider border sprays (mites) and 'spot' sprays (lucerne flea) Spray prior to the production of winter eggs to suppress populations and reduce risk in the following season | | # Millipedes, earwigs & slaters ## Increasing pest prevalence Earwigs, millipedes and slaters have increased in pest status over the last 4-5 years in SE Australia Total pest reports received from PestFacts subscribers from SA, Vic and NSW since 2006 | | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | |------------|------|------|------|------|------|------|------|------| | Earwigs | 1 | 0 | 0 | 0 | 4 | 5 | 7 | 5 | | Millipedes | 3 | 1 | 0 | 1 | 7 | 8 | 2 | 2 | | Slaters | 0 | 1 | 2 | 0 | 4 | 4 | 5 | 8 | - This increase has been linked to stubble retention, no-till farming practices and improvements in soil organic matter, which have provided a more favourable habitat - Damage has been reported mainly in the medium and high rainfall zones, including Wimmera and Western Districts in Victoria #### Lifecycle/description - Adults 20 mm long - Communal - Easily confused with beneficial earwigs #### **Damage** - Adults and nymphs attack canola, lupins, cereals - Associated with heavier soils, stubble - Irregular chewing of leaves, cotyledons, stems (similar to slug damage) - Can also chew through seed pods; and occasionally are a grain contaminant - Nocturnal feeders (inspect at night) ## Earwigs: the good & the bad # Forficula auricularia EUROPEAN EARWIGS #### **PEST** - 12 24 mm long - Uniform, dark colour body - Legs & pincers lighter than the body #### Gonolabis michaelseni NATIVE EARWIG #### BENEFICIAL - Lighter fore body, darker abdomen - Legs & pincers similar colour to other parts of the body # Labidura truncata COMMON BROWN EARWIG #### **BENEFICIAL** - 35 mm long - Dull brown with straw coloured markings - Orange triangle on the back ## **European earwigs - management** - Cultural removing the shelter - Stubble burn - Weed control - Cultivation - Grazing pastures to <1.5 t/ha in Spring - Biological - Carabid beetles - Birds & lizards - Chemical: - Nothing registered in broadacre crops - Some chemicals registered in horticulture (carbaryl, chlorpyrifos) - Seed dressings may give some control ## **Black Portuguese millipedes** ### Lifecycle/description - Active in autumn and spring - 2 years to sexual maturity - Easily distinguishable from native species #### **Damage** - Mainly organic matter feeder, attacks canola and cereals - Associated with black organic soils (although damage has occurred on lighter soils) - Foliar grazing, cotyledons/leaves (relatively rare) - Nocturnal feeders - Large numbers? Damage? ## Slaters/ Pill bugs ### Lifecycle/description - Crustations related to crabs and lobsters; terrestrial but moisture dependent - Stubble provides a cool, moist habitat; crumbly clay soil surfaces aid their survival - Feed on decaying vegetable and animal matter - The flood bug (Australiodillo bifrons) slater species can swarm - Prevention is best ### **Damage** - Cereals, canola and lentils - Chew base or tips of seedlings ## Managing trash feeders: thinking ahead #### Risk is increased in: - Canola - Heavy organic soils that retain moisture - Stubble retention / high loads - Wetter weather patterns - Poor germination / slow plant growth - High populations last spring #### To reduce losses: - Understand the culprit! - Monitor prior to sowing (traps) - Manage / burn stubbles (timing!) - Sow other crops (not canola) - Rapid establishment - High vigour varieties - Higher seeding rates - Few registered insecticides - Difficult to control with SPs and OPs - Fipronil and imidacloprid some seed registrations (see Fact Sheet) - Methiocarb baits offer some control in horticulture # False wireworms and beetles ## FWW and (adult) beetles species | | | Size
range | Larval colour | | | | |--------------------------------------|-----------------------|---------------|-------------------------|--|--|--| | 'Smaller' false wireworms a | and beetles | | | | | | | Bronzed field beetle larvae | Adelium brevicorne | 9-12 mm | Shiny grey | | | | | Grey false wireworm | Isopteron aversum | 10-12mm | Grey green
flattened | | | | | Vegetable beetle | Gonocephalum elderi | 10 mm | Brown | | | | | 'Larger' false wireworms and beetles | | | | | | | | Eastern false wireworm | Pterohelaeus spp. | 50 mm | Light brown | | | | | Southern false wireworm | Gonocephalum misellum | 20mm | Cream brown | | | | # Bronzed field beetle (BFB) #### Lifecycle/description - Native species, soil dwelling - Common in <u>and on</u> fine textured soils high in organic matter - Favoured by stubble retention, trash (shelter/ breeding) - Adult beetle lay eggs in late Feb/March #### **Damage** - >5 adults/m2 under carpet squares pre-sowing - Larvae ringbark seedling & sever the hypocotyl of young seedlings - Adults feed on decaying organic matter ## Bronzed field beetle #### **Cultural control** Remove plant residues / trash by late February (before eggs are laid) Un-raked plots Raked plots ### **Reducing harvest contamination** - Preventing/controlling the autumn population - Avoid leaving windrows on the ground too long - Harvest in the hottest part of the day # Vegetable beetle ### Lifecycle/description - Larvae 10 mm (brown) rarely seen above the soil surface - Adults 8 mm long, flattened, usually dull grey, but sometimes brown / black. Often with soil on their backs - One generation per year #### Damage - Adults may attack emerging canola - Larvae damage cereals - o hollow out seeds - attack roots or ringbark seedling at or below the soil surface ## Managing false wireworm/beetles #### **Cultural** #### 1. Crop choice • Sow less susceptible crops, e.g. cereals or pulses #### 2. Seedbed preparation - Remove crop residue in Feb - Monitor adult activity before sowing canola (carpet square or baits) #### 3. Sowing - Compaction good soil/seed contact - Early seeding date - (if risk) higher seeding rates #### **Insecticides** Seed dressings have limited benefit for these pests ## Mandalotus weevils ## Mandalotus weevils (multiple spo.) Decision Making Mandalotus weevils (multiple spo.) In Grain Crops - Largest Australian weevil genus - 152 described species - Endemic, mainly SE Australia - Taxonomy not defined #### **Adults** - 3-5 mm long, flightless, dull grey-brown - Attack seedlings of canola, cereals, pulses in autumn - Mainly lighter soils #### Damage - worst in canola - Adults chew stems, leaves, cotyledons, ringbark/ lop young seedlings - Often first noticed 1 week after emergence - Damage occurs <u>rapidly</u> intervene immediately Usually patchy (SA mallee 2013) Damage in lentils, 2010 Typical ring-barking of canola seedlings ## Crop damage Canola destroyed at Bowhill, SA, 2003 Sometimes large areas (Ardrossan SA 2009) #### Crop damage - # reports Crop damage reports in SA, Vic and NSW 2006-2012 (Perry, Umina) # Decision Making for Integrated Pest Management in Grain Crops #### Mandalotus distribution #### Identification • Over 10 species, only 2 currently identified, some undescribed • 3-5mm, resemble clod of dirt, often rows of thick paddle- shaped hairs on the back #### Identification M. puncticollis (common in Vic) M. crawfordi (common in SA mallee) ## Monitoring and assessing risk - Paddock history (areas of paddocks with previous problems, little insecticide use) - Soil type/region lighter calcareous - Hard to find. Check under weeds and grasses from early April – best after rainfall ## **Biology - lifecycle** - Sexual reproduction, one generation per year - Critical period is May/June (peak adult emergence) ## **Biology - over-summering** #### Adults 'hibernate' deep in the soil over summer Presence of adults in the soil profile (Perry, DeGraaf) #### Management - Difficult not practical during non-crop period (adults hibernate well below ground) - Current best bet: Chemical control <u>in high risk</u> <u>areas</u> (see next slides) - Region/soil type - Paddock history - Canola not sown before! - Monitor carefully at 1 week after emergence, check until 4 leaf stage #### Chemical control - seed treatments Recapture = 56% Mean n = 40 K. Perry 2013 #### Chemical control – bare earth sprays * χ^2 p < 0.05 within site # Establishment pests 'Best Bet' IPM strategy ## Take home messages - Crops most vulnerable at establishment, esp. canola and medics - Planning **pre-season** is important (time constraints to monitor sufficiently at establishment period) - We have the ability to foresee many establishment pest issues before they happen... as they are 'residents' - Monitoring & Pest ID are vital (eg. mites, weevils, scarabs) - Early planting, stubble management, increasing sowing density and seedbed rolling are common cultural strategies - Beneficial species often only play a support role at crop establishment (difference b/w crops & pastures)