

Integrated Pest Management pilot workshop for advisors

Winter Pulses - South

GRDC Grains Research & Development Corporation

Contents

- Viruses, aphids & pulses
- Native budworm
- Etiella in lentils
- <u>Winter pulse best bet</u>
- <u>Pea weevil</u>

Decision Making Key pests of winter pulses in Grain Crops

Chickpeas, faba beans, lupins, field peas, lentils

Pest	Emergence	Vegetative	Flowering	Podding - Grainfill
Mites				
Lucerne flea				
Weevils				
Snails				
Aphids				
Helicoverpa				
Etiella (field pea, lentils)				
Pea Weevil (peas)				

Viruses, aphids and pulses

GRADC Grains Research & Development Corporation

Viruses & Pulses

Management requires an integrated approach

Viruses are

- aphid-vectored
- Some are seed-borne

Increased risk if:

- High rainfall (> 500 mm/year)
- Irrigation region

Cowpea aphid on volunteer vetch

- Clover/medic pastures and other hosts nearby
- Green bridge (weeds and volunteers)

Aphid virus transmission

Non-Persistent (N-P) vs. Persistent (P)

BLV BWYV

(image: D Persley, DAFF Qld)

Need only very short feeding times

Need feed for several hours to acquire virus

Insecticides <u>not</u> usually fast enough to reduce transmission Insecticides may reduce virus transmission

 Monitoring and aphid thresholds do <u>not</u> apply to aphids carrying virus
Grains Research & Development Corporation

aphids and virus transmission

GREEN PEACH APHID (Myzus persicae)	PEA APHID (Acyrthosiphon pisum)	FOR APHID (Aphis craccivora)	BLUEGREEN APHID (Acyrthosiphon kondol)	Ex GRDC factsheet
Transmissi	on of viruses k	by different apl	hid species	factsheet "Aphids and viruses
Aphid species	Cucumber mosaic virus (non-persistent)	Pea seed-borne mosaic virus (non-persistent)	Beet western yellows virus (persistent)	
Green peach aphid	✓	~	~	in pulse
Pea aphid	✓	×		e crops"
Cowpea aphid	✓	✓	~	ps"
Bluegreen aphid	✓			

Managing aphids and virus impact

Minimise sources of virus (green bridge, weeds)

Sow

- virus-free seed
- resistant cultivars
- Into standing stubble
- Higher seeding rate

Control

Virus-infected plants scattered through a chickpea crop

- Seed dressing where risk of persistent virus

Flowering to grain fill

Native budworm

Etiella moth

Aphids

GRADC Grains Research & Development Corporation

Native budworm

GRADC Grains Research & Development Corporation

Native budworm life stages

Helicoverpa size categories					
Very small	Small	Medium	Large		
1-3 mm	4-7 mm	8-23 mm	24-30+ mm		

90 % of damage caused by these larvae 🥌

Monitoring budworm

Early warning – moth activity

- Pheromone traps

In-crop monitoring

- Sweep net

Dynamic thresholds for native budworm

	K – grain loss kg/larva/ha	P – grain price \$/tonne	C – cost of control \$/ha	ET – larvae per 10 sweeps
Field peas	50	350	10	0.6
Lentils	60	435	10	0.4
Faba bean	90	335	10	0.3
Chickpeas - desi	30	275	10	1.2
Canola	6	580	10	2.9
Lupins	7	300	10	4.8
Field peas	50	350	10	0.6

ET = (C x 1000) / (K x P)

*Developed in Western Australia: Source: DAFWA

Control is warranted if the cost of control is less than the value of the yield loss predicted.

	Value of yield loss (\$/ha)				
Chickpea price (\$/t)	1 larva/10 sweeps	2 larva/10 sweeps	3 larva/10 sweeps	4 larva/10 sweeps	5 larva/10 sweeps
200	6	12	18	24	30
300	9	18	27	36	45
400	12	24	36	48	60
500	15	30	45	60	75
600	18	36	54	72	90

Value of yield loss = (cost of control x 1000)/ (30 x chickpea price) based on DAFWA estimate of potential yield loss 30 kg/ha per larva/10 sweeps

Decision Making Do receival standards for defective grain for insect Management in Grain Crops make yield thresholds irrelevant?

Faba bean as an example

Cost of	Grain price (\$/t)			
control (\$/ha)	300	400	500	
15	0.6	0.4	0.3	
20	0.7	0.6	0.4	
25	0.9	0.7	0.6	
30	1.1	0.8	0.7	
35	1.3	1.0	0.8	
40	1.5	1.1	0.9	

Based on DAFWA yield loss estimate of 90 kg/ha per larva per 10 sweeps.

Faba beans Canning grade	2% Max by weight, includes 1% Max by weight Poor Colour
Faba beans #1 grade	6% Max by weight includes 3% Max by weight Poor Colour 3% Max by weight total of all other Defects
Faba beans #2 grade	10% Max by weight , includes 7% Max by weight Poor Colour
Faba beans #3 grade	20% Max by weight of which 7% Max by weight bin burnt, caked, heat damaged, sprouted

Other considerations

Egg and early instar mortality high

Hot weather – small larvae burrow

Soft options – NPV, Bt?

Target small – medium larvae

Grains Research & Development Corporation

Your GRDC working with you

GRI

45 cm row spacing Average plant height = approx 60 cm mean larval density 5-8 per metre row

QDAFF, 2014

Etiella in lentils

Etiella in lentils

- Larvae remain enclosed within pods until close to maturity
 - Damage levels not known until harvest
 - <u>Not</u> exposed to chemical sprays
- Sprays must target adult moths before egg lay
- Therefore require early warning system
- Very low tolerance for damaged lentil grain

http://www.graintrade.org.au/commodity_standards

Egg laid on

Early warning system – Etiella

Etiella degree-day model

- Forecasts timing of initial moth flight
- Uses daily max/min temperatures
- Date when the model reaches 351 D-days is the date to start monitoring for moth flights
- Download the model from the SARDI website <u>www.sardi.sa.gov.au</u>
- Input max/min temperatures from <u>www.bom.gov.au/climate/data</u>
- PestFacts newsletter provides model D-day outputs during spring

Etiella flight model output

Date

Can we control *Helicoverpa* and *Etiella* with one spray?

- However in some years YES.
- Requires close monitoring and use of the *Etiella* model.

Decision Making

in Grain Crops

Adapted from M. Miles, H. Brier, Lentil Focus Proceedings 2002

Aphids – direct damage

	Threshold
Chickpea	None
Lupins	Treat at appearance of clusters on flowering plants (NSW)
Faba beans	10% plants heavily infested (Vic)
Field pea	None. Assess % plants infested.
Lentil	None

Winter pulse best bet

Pest	Post harvest, Pre-sowing	Establishment - vegetative	Flowering - grainfill
Aphids – direct damage (not virus) Cowpea Green peach Blue-green Pea aphid	Remove green bridge (aphid hosts) to minimise build up during autumn and spring. Sowing into standing stubble may reduce aphid landing and delay aphid build up in crops.	Control in-crop weeds to minimise sources of aphids. Conserve beneficial insects that will suppress small aphid populations and reduce the likelihood of outbreaks. High nitrogen may make the crop more attractive to aphids	Conserve and monitor beneficials that suppress aphids. Be aware that use of SPs, OPs and carbamates may flare aphids. Monitor post application for flaring. Limited knowledge of damaging levels. If control is required, use soft options (e.g. pirimicarb).

Edgeroi chickpea crop (11km NW of Edgeroi) with ~50% symptomatic plants throughout block 2012. (M. Sharman, DAFF)

Virus symptoms in chickpeas showing reddening 2011 (M. Sharman, DAFF)

- Losses are often difficult to estimate but can be 100% if infections are early in the cropping cycle and at high incidence
- if infection is very late in the season then those plants may still have produced some pods but it is likely the seed quality would be poor as the plants would have shut down (died) prematurely.

Pea weevil

Pea Weevil (PW): a southern Pulse IPM case study

- 1980's emerged as major pest
 - no effective natural enemies
 - no cultural controls
 - insecticidal control difficult
 - Timing must prevent egglaying
- 1986-1992: coordinated research on PW biology/ecology across 3 States
 - objective to generate new knowledge to improve management

Pea Weevil: the key R&D findings

- PW invasion of pea crops
 - Occurs from crop edge, PW infestation remains highly skewed
 - Timing of invasion (start date & duration) is temperature dependent
 - Predictive models were developed
- Rate of Pea Weevil Development
 - Rate of ovarian development
 - Egg to adult: Pea crop consistently harvestable 3-4 weeks before first PW adults develop

Pea Weevil - The IPM Strategy

- Optimised Insecticidal Control
 - Border spraying (outer 40m, < 1/3rd of average crop area)
 - Accurate timing guidelines:
 - date for 1st spray
 - need for 2nd spray (and date if required)
 - Marked reduction in grain infestation levels and spray costs
- Early Harvest followed by grazing
 - Yield losses minimized, and
 - Prevents PW dispersal and carryover within the district

